20 research outputs found

    Coin.AI: A Proof-of-Useful-Work Scheme for Blockchain-based Distributed Deep Learning

    Get PDF
    One decade ago, Bitcoin was introduced, becoming the first cryptocurrency and establishing the concept of "blockchain" as a distributed ledger. As of today, there are many different implementations of cryptocurrencies working over a blockchain, with different approaches and philosophies. However, many of them share one common feature: they require proof-of-work to support the generation of blocks (mining) and, eventually, the generation of money. This proof-of-work scheme often consists in the resolution of a cryptography problem, most commonly breaking a hash value, which can only be achieved through brute-force. The main drawback of proof-of-work is that it requires ridiculously large amounts of energy which do not have any useful outcome beyond supporting the currency. In this paper, we present a theoretical proposal that introduces a proof-of-useful-work scheme to support a cryptocurrency running over a blockchain, which we named Coin.AI. In this system, the mining scheme requires training deep learning models, and a block is only mined when the performance of such model exceeds a threshold. The distributed system allows for nodes to verify the models delivered by miners in an easy way (certainly much more efficiently than the mining process itself), determining when a block is to be generated. Additionally, this paper presents a proof-of-storage scheme for rewarding users that provide storage for the deep learning models, as well as a theoretical dissertation on how the mechanics of the system could be articulated with the ultimate goal of democratizing access to artificial intelligence.Comment: 17 pages, 5 figure

    Semantic smart contracts for blockchain-based services in the Internet of Things

    Get PDF
    International audienceThe emerging Blockchain (BC) and Distributed Ledger technologies have come to impact a variety of domains, from capital market sectors to digital asset management in the Internet of Things (IoT). As a result, more and more BC-based decentralized applications for numerous cross-domain services have been developed. These applications implement specialized decentralized computer programs called Smart Contracts (SCs) which are deployed into BC frameworks. Although these SCs are open ato public, it is challenging to discover and utilize such SCs for a wide range of usages from both systems and end-users because such SCs are already compiled in form of byte-codes without any associated meta-data. This motivates us to propose a solution called Semantic SC (SSC) which integrates RESTful semantic web technologies in SCs, deployed on the Ethereum Blockchain platform, for indexing, browsing and annotating such SCs. The solution also exposes the relevant distributed ledgers as Linked Data for enhancing the discovery capability. To achieve this goal, the OWLS service ontology is extended by incorporating some domain specific terminologies, which are used in the development of the proposed SSCs. As a result, SSC can be utilized to enrich queries for a domain-specific terms across multiple distributed ledgers, which greatly increases the discovery capability of decentralized IoT applications and services. Contribution in standardization is also discussed. We believe that our research work takes the first steps towards connecting BC-based decentralized services with semantic web services in order to provide better IoT ecosystems

    Blockchain-based Security Framework for Critical Industry 4.0 Cyber-physical System

    Get PDF
    There has been an intense concern for security alternatives because of the recent rise of cyber attacks, mainly targeting critical systems such as industry, medical, or energy ecosystem. Though the latest industry infrastructures largely depend on AI-driven maintenance, the prediction based on corrupted data undoubtedly results in loss of life and capital. Admittedly, an inadequate data-protection mechanism can readily challenge the security and reliability of the network. The shortcomings of the conventional cloud or trusted certificate-driven techniques have motivated us to exhibit a unique Blockchain-based framework for a secure and efficient industry 4.0 system. The demonstrated framework obviates the long-established certificate authority after enhancing the consortium Blockchain that reduces the data processing delay, and increases cost-effective throughput. Nonetheless, the distributed industry 4.0 security model entails cooperative trust than depending on a single party, which in essence indulges the costs and threat of the single point of failure. Therefore, multi-signature technique of the proposed framework accomplishes the multi-party authentication, which confirms its applicability for the real-time and collaborative cyber-physical system.Comment: 07 Pages, 4 Figures, IEEE Communication Magazin

    Elastic and cost-effective data carrier architecture for smart contract in blockchain

    Full text link
    [EN] Smart contract, which could help developer deploy decentralized and secure blockchain application, is one of the most promising technologies for modern Internet of things (IoT) ecosystem today. However, Ethereum smart contract lacks of ability to communicate with outside IoT environment. To enable smart contracts to fetch off-chain data, this paper proposes a data carrier architecture that is cost-effective and elastic for blockchain-enabled IoT environment. Three components, namely Mission Manager, Task Publisher and Worker, are presented in the data carrier architecture to interact with contract developer, smart contract, Ethereum node and off-chain data sources. Selective solutions are also proposed for filtering smart contract event and decoding event log to fit different requirements. The evaluation results and discussions show the proposed system will decrease about 20USD deployment cost in average for every smart contract, and it is more efficient and elastic compared with Oraclize Oracle data carrier service.This work was supported by the fund of National Natural Science Foundation of China (Grants No. 61702102), Natural Science Foundation of Fujian Province, China (Grant No. 2018J05100), Foundation for Distinguished Young Scholars of Fujian Agriculture and Forestry University (Grant No. xjq201809), and in part by the MOST of Taiwan (Grant No. 107-2623-E-009-006-D).Liu, X.; Muhammad, K.; Lloret, J.; Chen, Y.; Yuan, S. (2019). Elastic and cost-effective data carrier architecture for smart contract in blockchain. Future Generation Computer Systems. 100:590-599. https://doi.org/10.1016/j.future.2019.05.04259059910

    Internet of Thing Based Confidential Healthcare Data Storage, Access Control and Monitoring Using Blockchain Technique

    Get PDF
    Internet of Things plays a significant role in multiple sectors like agriculture, manufacturing and healthcare for collecting information to automation. The collected information is in different diversity and consists of confidential and non-confidential information. Secure handling of confidential data is a crucial task in cloud computing like storage, access control and monitoring. The blockchain based storage technique provides immutable data storage, efficient access control and dynamic monitoring to confidential data. Thus, the secure internet of things data storage, access control and monitoring using blockchain technique is proposed in this work. The patients health information that are in different formats are pruned by a decision tree algorithm and it classifies the confidential data and non-confidential data by the fuzzy rule classification technique. Depending on data owner's willing, the fuzzy rule is framed and the confidential and non-confidential data collected by internet of things sensors are classified. To provide confidentiality to confidential data, Attribute Based Encryption is applied to confidential data and stored in an off-chain mode of blockchain instead of entire data encryption and storage. The non-confidential data is stored in a plaintext form in cloud storage. When compared to support vector machine, K-nearest neighbor and Naive Bayes classification techniques, the proposed fuzzy rule based confidential data identification produces greater than 96 % of accuracy based on data owner willing and confidential data storage takes lesser than 20 % of storage space and processing time in an entire data storage. Additionally, the blockchain performances like throughput, network scalability and latency is optimized through minimal block size and transactions. Thus, our experimental results show that the proposed blockchain based internet of things data storage, access control and monitoring technique provides better confidentiality and access control to confidential data than the conventional cloud storage technique with lesser processing time

    A novel distributed authentication of blockchain technology integration in IoT services

    Get PDF
    Internet of Things (IoT) is currently playing a major role in how intelligent devices are interconnected and deployed to automate services in transport and smart living sectors. However, IoT is facing challenges in terms of data protection and authentication due to the heterogeneous nature of IoT devices that do not exhibit a central authority. It is crucial to provide secure and trustworthy solutions for the increasing demands of decentralized IoT environments. To this end, this research proposes a novel integration of blockchain-technologies in IoT services to enhance security, data integrity, users privacy, system scalability and interoperability of devices. This is done by leveraging smart contracts to enforce authentication, access control and data exchange mechanisms for IoT devices. The proposed approach is verified by the construction and deployment of a smart contract over the Polygon blockchain network in a simulated real-world IoT scenario. The obtained results show that the proposed approach ensures fast and secure authentication in IoT networks by decreasing the risk of unauthorized access and data tampering

    Blockchain Applicability for the Internet of Things: Performance and Scalability Challenges and Solutions

    Get PDF
    Blockchain has recently been able to draw wider attention throughout the research community. Since its emergence, the world has seen the mind-blowing expansion of this new technology, which was initially developed as a pawn of digital currency more than a decade back. A self-administering ledger that ensures extensive data immutability over the peer-to-peer network has made it attractive for cybersecurity applications such as a sensor-enabled system called the Internet of things (IoT). Brand new challenges and questions now demand solutions as huge IoT devices are now online in a distributed fashion to ease our everyday lives. After being motivated by those challenges, the work here has figured out the issues and perspectives an IoT infrastructure can suffer because of the wrong choice of blockchain technology. Though it may look like a typical review, however, unlike that, this paper targets sorting out the specific security challenges of the blockchain-IoT eco-system through critical findings and applicable use-cases. Therefore, the contribution includes directing Blockchain architects, designers, and researchers in the broad domain to select the unblemished combinations of Blockchain-powered IoT applications. In addition, the paper promises to bring a deep insight into the state-of-the-art Blockchain platforms, namely Ethereum, Hyperledger, and IOTA, to exhibit the respective challenges, constraints, and prospects in terms of performance and scalability
    corecore