882 research outputs found

    A blockchain-based trust management system for 5G network slicing enabled C-RAN

    Get PDF
    The mobility nature of the wireless networks and the time-sensitive tasks make it necessary for the system to transfer the messages with a minimum delay. Cloud Radio Access Network (C-RAN) reduces the latency problem. However, due to the trustlessness of 5G networks resulting from the heterogeneity nature of devices. In this article, for the edge devices, there is a need to maintain a trust level in the C-RAN node by checking the rates of devices that are allowed to share data among other devices. The SDN controller is built into a macro-cell that plays the role of a cluster head. The blockchain-based automatically authenticates the edge devices by assigning a unique identification that is shared by the cluster head with all C-RAN nodes connected to it. Simulation results demonstrate that, compared with the benchmark, the proposed approach significantly improves the processing time of blocks, the detection accuracy of malicious nodes, and transaction transmission delay

    NSBchain: A Secure Blockchain Framework for Network Slicing Brokerage

    Full text link
    With the advent of revolutionary technologies, such as virtualization and softwarization, a novel concept for 5G networks and beyond has been unveiled: Network Slicing. Initially driven by the research community, standardization bodies as 3GPP have embraced it as a promising solution to revolutionize the traditional mobile telecommunication market by enabling new business models opportunities. Network Slicing is envisioned to open up the telecom market to new players such as Industry Verticals, e.g. automotive, smart factories, e-health, etc. Given the large number of potential new business players, dubbed as network tenants, novel solutions are required to accommodate their needs in a cost-efficient and secure manner. In this paper, we propose NSBchain, a novel network slicing brokering (NSB) solution, which leverages on the widely adopted Blockchain technology to address the new business models needs beyond traditional network sharing agreements. NSBchain defines a new entity, the Intermediate Broker (IB), which enables Infrastructure Providers (InPs) to allocate network resources to IBs through smart contracts and IBs to assign and re-distribute their resources among tenants in a secure, automated and scalable manner. We conducted an extensive performance evaluation by means of an open-source blockchain platform that proves the feasibility of our proposed framework considering a large number of tenants and two different consensus algorithms

    Federated Learning for 6G: Paradigms, Taxonomy, Recent Advances and Insights

    Full text link
    Artificial Intelligence (AI) is expected to play an instrumental role in the next generation of wireless systems, such as sixth-generation (6G) mobile network. However, massive data, energy consumption, training complexity, and sensitive data protection in wireless systems are all crucial challenges that must be addressed for training AI models and gathering intelligence and knowledge from distributed devices. Federated Learning (FL) is a recent framework that has emerged as a promising approach for multiple learning agents to build an accurate and robust machine learning models without sharing raw data. By allowing mobile handsets and devices to collaboratively learn a global model without explicit sharing of training data, FL exhibits high privacy and efficient spectrum utilization. While there are a lot of survey papers exploring FL paradigms and usability in 6G privacy, none of them has clearly addressed how FL can be used to improve the protocol stack and wireless operations. The main goal of this survey is to provide a comprehensive overview on FL usability to enhance mobile services and enable smart ecosystems to support novel use-cases. This paper examines the added-value of implementing FL throughout all levels of the protocol stack. Furthermore, it presents important FL applications, addresses hot topics, provides valuable insights and explicits guidance for future research and developments. Our concluding remarks aim to leverage the synergy between FL and future 6G, while highlighting FL's potential to revolutionize wireless industry and sustain the development of cutting-edge mobile services.Comment: 32 pages, 7 figures; 9 Table
    corecore