10,774 research outputs found

    CLOUTIDY: A CLOUD-BASED SUPPLY CHAIN MANAGEMENT SYSTEM USING SEMAR AND BLOCKCHAIN SYSTEM

    Get PDF
    Supply chain management (SCM) system is an essential requirement for companies and manufacturers to collaborate in doing business. There are many techniques to manage supply chains, such as using Excel sheets and web-based applications. However, these techniques are ineffective, insecure, and prone to human error. In this paper, we propose CLOUTIDY, a cloud-based SCM system using SEMAR (Service Market) and Blockchain system. We modify JUGO architecture to develop SEMAR as a broker between users and cloud service providers. Also, we apply the Blockchain concept to store the activity log of the SCM system in a decentralized database. CLOUTIDY system can solve several common cases: service selection, resource provisioning, authentication and access control. Also, it improves the security of data by storing each activity log of the supply chain management system in the Blockchain system

    A BLOCKCHAIN-BASED ONLINE REVIEW SYSTEM OF TOURISM PRODUCTS USING ETHEREUM

    Get PDF
    Rapid technological advances have made blockchain technology applicable not only to digital money, but in various fields. One of the areas that can be implemented by blockchain is digital tourism, specifically in the online review system of tourism products. The current online review system has several problems due to its centralized nature. The problem faced is the manipulation of review data which can be in the form of review deletion by a centralized party. This research proposes a decentralized online review system using the Ethereum blockchain technology, Smart Contracts, and IPFS to provide a secure, transparent, and trustworthy online review system platform. The purpose of this research is to implement a permission-less blockchain as a storage for reviews (review forms and log notes) and develop a web application as a user interface. The data used is data from travel sites which contain details about hotels and restaurants in Bukhara. The results displayed are the development of a web application that implements a permission-less blockchain using Ethereum and the system performance is displayed based on system testing, which comprised of unit testing and Black-Box testing

    LightChain: A DHT-based Blockchain for Resource Constrained Environments

    Get PDF
    As an append-only distributed database, blockchain is utilized in a vast variety of applications including the cryptocurrency and Internet-of-Things (IoT). The existing blockchain solutions have downsides in communication and storage efficiency, convergence to centralization, and consistency problems. In this paper, we propose LightChain, which is the first blockchain architecture that operates over a Distributed Hash Table (DHT) of participating peers. LightChain is a permissionless blockchain that provides addressable blocks and transactions within the network, which makes them efficiently accessible by all the peers. Each block and transaction is replicated within the DHT of peers and is retrieved in an on-demand manner. Hence, peers in LightChain are not required to retrieve or keep the entire blockchain. LightChain is fair as all of the participating peers have a uniform chance of being involved in the consensus regardless of their influence such as hashing power or stake. LightChain provides a deterministic fork-resolving strategy as well as a blacklisting mechanism, and it is secure against colluding adversarial peers attacking the availability and integrity of the system. We provide mathematical analysis and experimental results on scenarios involving 10K nodes to demonstrate the security and fairness of LightChain. As we experimentally show in this paper, compared to the mainstream blockchains like Bitcoin and Ethereum, LightChain requires around 66 times less per node storage, and is around 380 times faster on bootstrapping a new node to the system, while each LightChain node is rewarded equally likely for participating in the protocol

    B-CoC: A Blockchain-Based Chain of Custody for Evidences Management in Digital Forensics

    Get PDF
    One of the main issues in digital forensics is the management of evidences. From the time of evidence collection until the time of their exploitation in a legal court, evidences may be accessed by multiple parties involved in the investigation that take temporary their ownership. This process, called Chain of Custody (CoC), must ensure that evidences are not altered during the investigation, despite multiple entities owned them, in order to be admissible in a legal court. Currently digital evidences CoC is managed entirely manually with entities involved in the chain required to fill in documents accompanying the evidence. In this paper, we propose a Blockchain-based Chain of Custody (B-CoC) to dematerialize the CoC process guaranteeing auditable integrity of the collected evidences and traceability of owners. We developed a prototype of B-CoC based on Ethereum and we evaluated its performance

    BlockPKI: An Automated, Resilient, and Transparent Public-Key Infrastructure

    Full text link
    This paper describes BlockPKI, a blockchain-based public-key infrastructure that enables an automated, resilient, and transparent issuance of digital certificates. Our goal is to address several shortcomings of the current TLS infrastructure and its proposed extensions. In particular, we aim at reducing the power of individual certification authorities and make their actions publicly visible and accountable, without introducing yet another trusted third party. To demonstrate the benefits and practicality of our system, we present evaluation results and describe our prototype implementation.Comment: Workshop on Blockchain and Sharing Economy Application
    • …
    corecore