9,181 research outputs found

    Securing SDN controlled IoT Networks Through Edge-Blockchain

    Get PDF
    The Internet of Things (IoT) connected by Software Defined Networking (SDN) promises to bring great benefits to cyber-physical systems. However, the increased attack surface offered by the growing number of connected vulnerable devices and separation of SDN control and data planes could overturn the huge benefits of such a system. This paper addresses the vulnerability of the trust relationship between the control and data planes. To meet this aim, we propose an edge computing based blockchain-as-a-service (BaaS), enabled by an external BaaS provider. The proposed solution provides verification of inserted flows through an efficient, edge-distributed, blockchain solution. We study two scenarios for the blockchain reward purpose: (a) information symmetry, in which the SDN operator has direct knowledge of the real effort spent by the BaaS provider; and (b) information asymmetry, in which the BaaS provider controls the exposure of information regarding spent effort. The latter yields the so called “moral hazard”, where the BaaS may claim higher than actual effort. We develop a novel mathematical model of the edge BaaS solution; and propose an innovative algorithm of a fair reward scheme based on game theory that takes into account moral hazard. We evaluate the viability of our solution through analytical simulations. The results demonstrate the ability of the proposed algorithm to maximize the joint profits of the BaaS and the SDN operator, i.e. maximizing the social welfare

    When Mobile Blockchain Meets Edge Computing

    Full text link
    Blockchain, as the backbone technology of the current popular Bitcoin digital currency, has become a promising decentralized data management framework. Although blockchain has been widely adopted in many applications, e.g., finance, healthcare, and logistics, its application in mobile services is still limited. This is due to the fact that blockchain users need to solve preset proof-of-work puzzles to add new data, i.e., a block, to the blockchain. Solving the proof-of-work, however, consumes substantial resources in terms of CPU time and energy, which is not suitable for resource-limited mobile devices. To facilitate blockchain applications in future mobile Internet of Things systems, multiple access mobile edge computing appears to be an auspicious solution to solve the proof-of-work puzzles for mobile users. We first introduce a novel concept of edge computing for mobile blockchain. Then, we introduce an economic approach for edge computing resource management. Moreover, a prototype of mobile edge computing enabled blockchain systems is presented with experimental results to justify the proposed concept.Comment: Accepted by IEEE Communications Magazin
    • …
    corecore