171,851 research outputs found

    A Framework for Blockchain Interoperability and Runtime Selection

    Full text link
    The suitability of a particular blockchain for a given use case depends mainly on the blockchain's functional and non-functional properties. Such properties may vary over time, and thus, a selected blockchain may become unsuitable for a given use case. This uncertainty may hinder the widespread adoption of blockchain technologies in general. To mitigate the impact of volatile blockchain properties, we propose a framework that monitors several blockchains, allows the user to define functional and non-functional requirements, determines the most appropriate blockchain, and enables the switchover to that chain at runtime. Our evaluation using a reference implementation shows that switching to another blockchain can save cost and enable users to benefit from better performance and a higher level of trust

    On Cyber Risk Management of Blockchain Networks: A Game Theoretic Approach

    Full text link
    Open-access blockchains based on proof-of-work protocols have gained tremendous popularity for their capabilities of providing decentralized tamper-proof ledgers and platforms for data-driven autonomous organization. Nevertheless, the proof-of-work based consensus protocols are vulnerable to cyber-attacks such as double-spending. In this paper, we propose a novel approach of cyber risk management for blockchain-based service. In particular, we adopt the cyber-insurance as an economic tool for neutralizing cyber risks due to attacks in blockchain networks. We consider a blockchain service market, which is composed of the infrastructure provider, the blockchain provider, the cyber-insurer, and the users. The blockchain provider purchases from the infrastructure provider, e.g., a cloud, the computing resources to maintain the blockchain consensus, and then offers blockchain services to the users. The blockchain provider strategizes its investment in the infrastructure and the service price charged to the users, in order to improve the security of the blockchain and thus optimize its profit. Meanwhile, the blockchain provider also purchases a cyber-insurance from the cyber-insurer to protect itself from the potential damage due to the attacks. In return, the cyber-insurer adjusts the insurance premium according to the perceived risk level of the blockchain service. Based on the assumption of rationality for the market entities, we model the interaction among the blockchain provider, the users, and the cyber-insurer as a two-level Stackelberg game. Namely, the blockchain provider and the cyber-insurer lead to set their pricing/investment strategies, and then the users follow to determine their demand of the blockchain service. Specifically, we consider the scenario of double-spending attacks and provide a series of analytical results about the Stackelberg equilibrium in the market game

    Blockchain: A Graph Primer

    Full text link
    Bitcoin and its underlying technology Blockchain have become popular in recent years. Designed to facilitate a secure distributed platform without central authorities, Blockchain is heralded as a paradigm that will be as powerful as Big Data, Cloud Computing and Machine learning. Blockchain incorporates novel ideas from various fields such as public key encryption and distributed systems. As such, a reader often comes across resources that explain the Blockchain technology from a certain perspective only, leaving the reader with more questions than before. We will offer a holistic view on Blockchain. Starting with a brief history, we will give the building blocks of Blockchain, and explain their interactions. As graph mining has become a major part its analysis, we will elaborate on graph theoretical aspects of the Blockchain technology. We also devote a section to the future of Blockchain and explain how extensions like Smart Contracts and De-centralized Autonomous Organizations will function. Without assuming any reader expertise, our aim is to provide a concise but complete description of the Blockchain technology.Comment: 16 pages, 8 figure

    A Systematic Review of Blockchain Literature in Logistics and Supply Chain Management: Identifying Research Questions and Future Directions

    Get PDF
    Potential blockchain applications in logistics and supply chain (LSCM) have gained increasing attention within both academia and industry. However, as a field in its infancy, blockchain research often lacks theoretical foundations, and it is not clear which and to what extent organizational theories are used to investigate blockchain technology in the field of LSCM. In response, based upon a systematic literature review, this paper: (a) identifies the most relevant organizational theories used in blockchain literature in the context of LSCM; and (b) examines the content of the identified organizational theories to formulate relevant research questions for investigating blockchain technology in LSCM. Our results show that blockchain literature in LSCM is based around six organizational theories, namely: agency theory, information theory, institutional theory, network theory, the resource-based view and transaction cost analysis. We also present how these theories can be used to examine specific blockchain problems by identifying blockchain-specific research questions that are worthy of investigation

    When Mobile Blockchain Meets Edge Computing

    Full text link
    Blockchain, as the backbone technology of the current popular Bitcoin digital currency, has become a promising decentralized data management framework. Although blockchain has been widely adopted in many applications, e.g., finance, healthcare, and logistics, its application in mobile services is still limited. This is due to the fact that blockchain users need to solve preset proof-of-work puzzles to add new data, i.e., a block, to the blockchain. Solving the proof-of-work, however, consumes substantial resources in terms of CPU time and energy, which is not suitable for resource-limited mobile devices. To facilitate blockchain applications in future mobile Internet of Things systems, multiple access mobile edge computing appears to be an auspicious solution to solve the proof-of-work puzzles for mobile users. We first introduce a novel concept of edge computing for mobile blockchain. Then, we introduce an economic approach for edge computing resource management. Moreover, a prototype of mobile edge computing enabled blockchain systems is presented with experimental results to justify the proposed concept.Comment: Accepted by IEEE Communications Magazin

    How blockchain impacts cloud-based system performance: a case study for a groupware communication application

    Get PDF
    This paper examines the performance trade-off when implementing a blockchain architecture for a cloud-based groupware communication application. We measure the additional cloud-based resources and performance costs of the overhead required to implement a groupware collaboration system over a blockchain architecture. To evaluate our groupware application, we develop measuring instruments for testing scalability and performance of computer systems deployed as cloud computing applications. While some details of our groupware collaboration application have been published in earlier work, in this paper we reflect on a generalized measuring method for blockchain-enabled applications which may in turn lead to a general methodology for testing cloud-based system performance and scalability using blockchain. Response time and transaction throughput metrics are collected for the blockchain implementation against the non-blockchain implementation and some conclusions are drawn about the additional resources that a blockchain architecture for a groupware collaboration application impose
    corecore