280 research outputs found

    Kinetic Solvers with Adaptive Mesh in Phase Space

    Full text link
    An Adaptive Mesh in Phase Space (AMPS) methodology has been developed for solving multi-dimensional kinetic equations by the discrete velocity method. A Cartesian mesh for both configuration (r) and velocity (v) spaces is produced using a tree of trees data structure. The mesh in r-space is automatically generated around embedded boundaries and dynamically adapted to local solution properties. The mesh in v-space is created on-the-fly for each cell in r-space. Mappings between neighboring v-space trees implemented for the advection operator in configuration space. We have developed new algorithms for solving the full Boltzmann and linear Boltzmann equations with AMPS. Several recent innovations were used to calculate the discrete Boltzmann collision integral with dynamically adaptive mesh in velocity space: importance sampling, multi-point projection method, and the variance reduction method. We have developed an efficient algorithm for calculating the linear Boltzmann collision integral for elastic and inelastic collisions in a Lorentz gas. New AMPS technique has been demonstrated for simulations of hypersonic rarefied gas flows, ion and electron kinetics in weakly ionized plasma, radiation and light particle transport through thin films, and electron streaming in semiconductors. We have shown that AMPS allows minimizing the number of cells in phase space to reduce computational cost and memory usage for solving challenging kinetic problems

    High-order Discretization of a Gyrokinetic Vlasov Model in Edge Plasma Geometry

    Full text link
    We present a high-order spatial discretization of a continuum gyrokinetic Vlasov model in axisymmetric tokamak edge plasma geometries. Such models describe the phase space advection of plasma species distribution functions in the absence of collisions. The gyrokinetic model is posed in a four-dimensional phase space, upon which a grid is imposed when discretized. To mitigate the computational cost associated with high-dimensional grids, we employ a high-order discretization to reduce the grid size needed to achieve a given level of accuracy relative to lower-order methods. Strong anisotropy induced by the magnetic field motivates the use of mapped coordinate grids aligned with magnetic flux surfaces. The natural partitioning of the edge geometry by the separatrix between the closed and open field line regions leads to the consideration of multiple mapped blocks, in what is known as a mapped multiblock (MMB) approach. We describe the specialization of a more general formalism that we have developed for the construction of high-order, finite-volume discretizations on MMB grids, yielding the accurate evaluation of the gyrokinetic Vlasov operator, the metric factors resulting from the MMB coordinate mappings, and the interaction of blocks at adjacent boundaries. Our conservative formulation of the gyrokinetic Vlasov model incorporates the fact that the phase space velocity has zero divergence, which must be preserved discretely to avoid truncation error accumulation. We describe an approach for the discrete evaluation of the gyrokinetic phase space velocity that preserves the divergence-free property to machine precision

    A 4th-Order Particle-in-Cell Method with Phase-Space Remapping for the Vlasov-Poisson Equation

    Get PDF
    Numerical solutions to the Vlasov-Poisson system of equations have important applications to both plasma physics and cosmology. In this paper, we present a new Particle-in-Cell (PIC) method for solving this system that is 4th-order accurate in both space and time. Our method is a high-order extension of one presented previously [B. Wang, G. Miller, and P. Colella, SIAM J. Sci. Comput., 33 (2011), pp. 3509--3537]. It treats all of the stages of the standard PIC update - charge deposition, force interpolation, the field solve, and the particle push - with 4th-order accuracy, and includes a 6th-order accurate phase-space remapping step for controlling particle noise. We demonstrate the convergence of our method on a series of one- and two- dimensional electrostatic plasma test problems, comparing its accuracy to that of a 2nd-order method. As expected, the 4th-order method can achieve comparable accuracy to the 2nd-order method with many fewer resolution elements.Comment: 18 pages, 10 figures, submitted to SIS

    Robustness of Cosmological Simulations I: Large Scale Structure

    Full text link
    The gravitationally-driven evolution of cold dark matter dominates the formation of structure in the Universe over a wide range of length scales. While the longest scales can be treated by perturbation theory, a fully quantitative understanding of nonlinear effects requires the application of large-scale particle simulation methods. Additionally, precision predictions for next-generation observations, such as weak gravitational lensing, can only be obtained from numerical simulations. In this paper, we compare results from several N-body codes using test problems and a diverse set of diagnostics, focusing on a medium resolution regime appropriate for studying many observationally relevant aspects of structure formation. Our conclusions are that -- despite the use of different algorithms and error-control methodologies -- overall, the codes yield consistent results. The agreement over a wide range of scales for the cosmological tests is test-dependent. In the best cases, it is at the 5% level or better, however, for other cases it can be significantly larger than 10%. These include the halo mass function at low masses and the mass power spectrum at small scales. While there exist explanations for most of the discrepancies, our results point to the need for significant improvement in N-body errors and their understanding to match the precision of near-future observations. The simulation results, including halo catalogs, and initial conditions used, are publicly available.Comment: 32 pages, 53 figures, data from the simulations is available at http://t8web.lanl.gov/people/heitmann/arxiv, accepted for publication in ApJS, several minor revisions, reference added, main conclusions unchange
    • …
    corecore