754 research outputs found

    SGXIO: Generic Trusted I/O Path for Intel SGX

    Full text link
    Application security traditionally strongly relies upon security of the underlying operating system. However, operating systems often fall victim to software attacks, compromising security of applications as well. To overcome this dependency, Intel introduced SGX, which allows to protect application code against a subverted or malicious OS by running it in a hardware-protected enclave. However, SGX lacks support for generic trusted I/O paths to protect user input and output between enclaves and I/O devices. This work presents SGXIO, a generic trusted path architecture for SGX, allowing user applications to run securely on top of an untrusted OS, while at the same time supporting trusted paths to generic I/O devices. To achieve this, SGXIO combines the benefits of SGX's easy programming model with traditional hypervisor-based trusted path architectures. Moreover, SGXIO can tweak insecure debug enclaves to behave like secure production enclaves. SGXIO surpasses traditional use cases in cloud computing and makes SGX technology usable for protecting user-centric, local applications against kernel-level keyloggers and likewise. It is compatible to unmodified operating systems and works on a modern commodity notebook out of the box. Hence, SGXIO is particularly promising for the broad x86 community to which SGX is readily available.Comment: To appear in CODASPY'1

    Security challenges and opportunities in adaptive and reconfigurable hardware

    Get PDF
    We present a novel approach to building hardware support for providing strong security guarantees for computations running in the cloud (shared hardware in massive data centers), while maintaining the high performance and low cost that make cloud computing attractive in the first place. We propose augmenting regular cloud servers with a Trusted Computation Base (TCB) that can securely perform high-performance computations. Our TCB achieves cost savings by spreading functionality across two paired chips. We show that making a Field-Programmable Gate Array (FPGA) a part of the TCB benefits security and performance, and we explore a new method for defending the computation inside the TCB against side-channel attacks.Northrop Grumman CorporationQuanta Computer (Firm

    The global unified parallel file system (GUPFS) project: FY 2002 activities and results

    Full text link
    • …
    corecore