6,351 research outputs found

    A Computational Framework for the Mixing Times in the QBD Processes with Infinitely-Many Levels

    Full text link
    In this paper, we develop some matrix Poisson's equations satisfied by the mean and variance of the mixing time in an irreducible positive-recurrent discrete-time Markov chain with infinitely-many levels, and provide a computational framework for the solution to the matrix Poisson's equations by means of the UL-type of RGRG-factorization as well as the generalized inverses. In an important special case: the level-dependent QBD processes, we provide a detailed computation for the mean and variance of the mixing time. Based on this, we give new highlight on computation of the mixing time in the block-structured Markov chains with infinitely-many levels through the matrix-analytic method

    A Web Aggregation Approach for Distributed Randomized PageRank Algorithms

    Full text link
    The PageRank algorithm employed at Google assigns a measure of importance to each web page for rankings in search results. In our recent papers, we have proposed a distributed randomized approach for this algorithm, where web pages are treated as agents computing their own PageRank by communicating with linked pages. This paper builds upon this approach to reduce the computation and communication loads for the algorithms. In particular, we develop a method to systematically aggregate the web pages into groups by exploiting the sparsity inherent in the web. For each group, an aggregated PageRank value is computed, which can then be distributed among the group members. We provide a distributed update scheme for the aggregated PageRank along with an analysis on its convergence properties. The method is especially motivated by results on singular perturbation techniques for large-scale Markov chains and multi-agent consensus.Comment: To appear in the IEEE Transactions on Automatic Control, 201

    A Self-learning Algebraic Multigrid Method for Extremal Singular Triplets and Eigenpairs

    Full text link
    A self-learning algebraic multigrid method for dominant and minimal singular triplets and eigenpairs is described. The method consists of two multilevel phases. In the first, multiplicative phase (setup phase), tentative singular triplets are calculated along with a multigrid hierarchy of interpolation operators that approximately fit the tentative singular vectors in a collective and self-learning manner, using multiplicative update formulas. In the second, additive phase (solve phase), the tentative singular triplets are improved up to the desired accuracy by using an additive correction scheme with fixed interpolation operators, combined with a Ritz update. A suitable generalization of the singular value decomposition is formulated that applies to the coarse levels of the multilevel cycles. The proposed algorithm combines and extends two existing multigrid approaches for symmetric positive definite eigenvalue problems to the case of dominant and minimal singular triplets. Numerical tests on model problems from different areas show that the algorithm converges to high accuracy in a modest number of iterations, and is flexible enough to deal with a variety of problems due to its self-learning properties.Comment: 29 page

    Sensitivity of Markov chains for wireless protocols

    Get PDF
    Network communication protocols such as the IEEE 802.11 wireless protocol are currently best modelled as Markov chains. In these situations we have some protocol parameters α\alpha, and a transition matrix P(α)P(\alpha) from which we can compute the steady state (equilibrium) distribution z(α)z(\alpha) and hence final desired quantities q(α)q(\alpha), which might be for example the throughput of the protocol. Typically the chain will have thousands of states, and a particular example of interest is the Bianchi chain defined later. Generally we want to optimise qq, perhaps subject to some constraints that also depend on the Markov chain. To do this efficiently we need the gradient of qq with respect to α\alpha, and therefore need the gradient of zz and other properties of the chain with respect to α\alpha. The matrix formulas available for this involve the so-called fundamental matrix, but are there approximate gradients available which are faster and still sufficiently accurate? In some cases BT would like to do the whole calculation in computer algebra, and get a series expansion of the equilibrium zz with respect to a parameter in PP. In addition to the steady state zz, the same questions arise for the mixing time and the mean hitting times. Two qualitative features that were brought to the Study Group’s attention were: * the transition matrix PP is large, but sparse. * the systems of linear equations to be solved are generally singular and need some additional normalisation condition, such as is provided by using the fundamental matrix. We also note a third highly important property regarding applications of numerical linear algebra: * the transition matrix PP is asymmetric. A realistic dimension for the matrix PP in the Bianchi model described below is 8064×8064, but on average there are only a few nonzero entries per column. Merely storing such a large matrix in dense form would require nearly 0.5GBytes using 64-bit floating point numbers, and computing its LU factorisation takes around 80 seconds on a modern microprocessor. It is thus highly desirable to employ specialised algorithms for sparse matrices. These algorithms are generally divided between those only applicable to symmetric matrices, the most prominent being the conjugate-gradient (CG) algorithm for solving linear equations, and those applicable to general matrices. A similar division is present in the literature on numerical eigenvalue problems
    • …
    corecore