17,036 research outputs found

    uFLIP: Understanding Flash IO Patterns

    Get PDF
    Does the advent of flash devices constitute a radical change for secondary storage? How should database systems adapt to this new form of secondary storage? Before we can answer these questions, we need to fully understand the performance characteristics of flash devices. More specifically, we want to establish what kind of IOs should be favored (or avoided) when designing algorithms and architectures for flash-based systems. In this paper, we focus on flash IO patterns, that capture relevant distribution of IOs in time and space, and our goal is to quantify their performance. We define uFLIP, a benchmark for measuring the response time of flash IO patterns. We also present a benchmarking methodology which takes into account the particular characteristics of flash devices. Finally, we present the results obtained by measuring eleven flash devices, and derive a set of design hints that should drive the development of flash-based systems on current devices.Comment: CIDR 200

    Prototyping a high-performance low-cost solid-state disk

    Full text link

    Data Cache-Energy and Throughput Models: Design Exploration for Embedded Processors

    Get PDF
    Most modern 16-bit and 32-bit embedded processors contain cache memories to further increase instruction throughput of the device. Embedded processors that contain cache memories open an opportunity for the low-power research community to model the impact of cache energy consumption and throughput gains. For optimal cache memory configuration mathematical models have been proposed in the past. Most of these models are complex enough to be adapted for modern applications like run-time cache reconfiguration. This paper improves and validates previously proposed energy and throughput models for a data cache, which could be used for overhead analysis for various cache types with relatively small amount of inputs. These models analyze the energy and throughput of a data cache on an application basis, thus providing the hardware and software designer with the feedback vital to tune the cache or application for a given energy budget. The models are suitable for use at design time in the cache optimization process for embedded processors considering time and energy overhead or could be employed at runtime for reconfigurable architectures

    Implications of non-volatile memory as primary storage for database management systems

    Get PDF
    Traditional Database Management System (DBMS) software relies on hard disks for storing relational data. Hard disks are cheap, persistent, and offer huge storage capacities. However, data retrieval latency for hard disks is extremely high. To hide this latency, DRAM is used as an intermediate storage. DRAM is significantly faster than disk, but deployed in smaller capacities due to cost and power constraints, and without the necessary persistency feature that disks have. Non-Volatile Memory (NVM) is an emerging storage class technology which promises the best of both worlds. It can offer large storage capacities, due to better scaling and cost metrics than DRAM, and is non-volatile (persistent) like hard disks. At the same time, its data retrieval time is much lower than that of hard disks and it is also byte-addressable like DRAM. In this paper, we explore the implications of employing NVM as primary storage for DBMS. In other words, we investigate the modifications necessary to be applied on a traditional relational DBMS to take advantage of NVM features. As a case study, we have modified the storage engine (SE) of PostgreSQL enabling efficient use of NVM hardware. We detail the necessary changes and challenges such modifications entail and evaluate them using a comprehensive emulation platform. Results indicate that our modified SE reduces query execution time by up to 40% and 14.4% when compared to disk and NVM storage, with average reductions of 20.5% and 4.5%, respectively.The research leading to these results has received funding from the European Union’s 7th Framework Programme under grant agreement number 318633, the Ministry of Science and Technology of Spain under contract TIN2015-65316-P, and a HiPEAC collaboration grant awarded to Naveed Ul Mustafa.Peer ReviewedPostprint (author's final draft

    GCRFP - PAGE REPLACEMENT FOR SOLID STATE DRIVE USING GHOST-CACHE

    Get PDF
    State Drive (SSD) is an alternative to data storage that is popular today, widely used as a media cache to speed up data access to the hard disk (HDD). This paper proposes page replacement technique on SSD cache that used frequency and recency parameter, alternately. The algorithm is selected adaptively based on trace input. This method helps to overcome changes in access patterns while minimizing the number of write processes to SSD. The proposed algorithm can choose a replacement technique that suits the user access pattern so that it can bring a better hit rate. The proposed algorithm is also integrated with the ghost-cache mechanism so that the reduction in the number of writing processes to SSD is significant. The experiment runs using a real dataset, describing trace of data read, and data write taken from real usage. The trial shows that the proposed algorithm can give good results compared to other similar algorithms
    corecore