50,527 research outputs found

    Mixed membership stochastic blockmodels

    Full text link
    Observations consisting of measurements on relationships for pairs of objects arise in many settings, such as protein interaction and gene regulatory networks, collections of author-recipient email, and social networks. Analyzing such data with probabilisic models can be delicate because the simple exchangeability assumptions underlying many boilerplate models no longer hold. In this paper, we describe a latent variable model of such data called the mixed membership stochastic blockmodel. This model extends blockmodels for relational data to ones which capture mixed membership latent relational structure, thus providing an object-specific low-dimensional representation. We develop a general variational inference algorithm for fast approximate posterior inference. We explore applications to social and protein interaction networks.Comment: 46 pages, 14 figures, 3 table

    Evaluating Overfit and Underfit in Models of Network Community Structure

    Full text link
    A common data mining task on networks is community detection, which seeks an unsupervised decomposition of a network into structural groups based on statistical regularities in the network's connectivity. Although many methods exist, the No Free Lunch theorem for community detection implies that each makes some kind of tradeoff, and no algorithm can be optimal on all inputs. Thus, different algorithms will over or underfit on different inputs, finding more, fewer, or just different communities than is optimal, and evaluation methods that use a metadata partition as a ground truth will produce misleading conclusions about general accuracy. Here, we present a broad evaluation of over and underfitting in community detection, comparing the behavior of 16 state-of-the-art community detection algorithms on a novel and structurally diverse corpus of 406 real-world networks. We find that (i) algorithms vary widely both in the number of communities they find and in their corresponding composition, given the same input, (ii) algorithms can be clustered into distinct high-level groups based on similarities of their outputs on real-world networks, and (iii) these differences induce wide variation in accuracy on link prediction and link description tasks. We introduce a new diagnostic for evaluating overfitting and underfitting in practice, and use it to roughly divide community detection methods into general and specialized learning algorithms. Across methods and inputs, Bayesian techniques based on the stochastic block model and a minimum description length approach to regularization represent the best general learning approach, but can be outperformed under specific circumstances. These results introduce both a theoretically principled approach to evaluate over and underfitting in models of network community structure and a realistic benchmark by which new methods may be evaluated and compared.Comment: 22 pages, 13 figures, 3 table

    Modeling heterogeneity in random graphs through latent space models: a selective review

    Get PDF
    We present a selective review on probabilistic modeling of heterogeneity in random graphs. We focus on latent space models and more particularly on stochastic block models and their extensions that have undergone major developments in the last five years

    Community Detection on Evolving Graphs

    Get PDF
    Clustering is a fundamental step in many information-retrieval and data-mining applications. Detecting clusters in graphs is also a key tool for finding the community structure in social and behavioral networks. In many of these applications, the input graph evolves over time in a continual and decentralized manner, and, to maintain a good clustering, the clustering algorithm needs to repeatedly probe the graph. Furthermore, there are often limitations on the frequency of such probes, either imposed explicitly by the online platform (e.g., in the case of crawling proprietary social networks like twitter) or implicitly because of resource limitations (e.g., in the case of crawling the web). In this paper, we study a model of clustering on evolving graphs that captures this aspect of the problem. Our model is based on the classical stochastic block model, which has been used to assess rigorously the quality of various static clustering methods. In our model, the algorithm is supposed to reconstruct the planted clustering, given the ability to query for small pieces of local information about the graph, at a limited rate. We design and analyze clustering algorithms that work in this model, and show asymptotically tight upper and lower bounds on their accuracy. Finally, we perform simulations, which demonstrate that our main asymptotic results hold true also in practice

    Efficient inference of overlapping communities in complex networks

    Get PDF
    We discuss two views on extending existing methods for complex network modeling which we dub the communities first and the networks first view, respectively. Inspired by the networks first view that we attribute to White, Boorman, and Breiger (1976)[1], we formulate the multiple-networks stochastic blockmodel (MNSBM), which seeks to separate the observed network into subnetworks of different types and where the problem of inferring structure in each subnetwork becomes easier. We show how this model is specified in a generative Bayesian framework where parameters can be inferred efficiently using Gibbs sampling. The result is an effective multiple-membership model without the drawbacks of introducing complex definitions of "groups" and how they interact. We demonstrate results on the recovery of planted structure in synthetic networks and show very encouraging results on link prediction performances using multiple-networks models on a number of real-world network data sets
    • …
    corecore