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The existence of community structures in networks is not unusual, in-

cluding in the domains of sociology, biology, and business, etc. The characteris-

tic of the community structure is that nodes of the same community are highly

similar while on the contrary, nodes across communities present low similar-

ity. In academia, there is a surge in research efforts on community detection

in network analysis, especially in developing statistically sound methodologies

for exploring, modeling, and interpreting these kind of structures and relation-

ships. This survey paper aims to provide a brief review of current applicable

statistical methodologies and approaches in a comparative manner along with

metrics for evaluating graph clustering results and application using R. At the

end, we provide promising future research directions.
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Chapter 1

Introduction

A network or a graph is a collection of points joined by lines, and

we call these points nodes and the lines edges. Nodes in the network may

represent individuals, organizations, or some other kind of units of study;

edges correspond to types of links, relationships, or interactions between the

nodes. Network analysis has become one of most popular modern research

topics. Caldarelli and Vespignani [4] brought up the concept of a complex

network, which is “a system composed of interconnected parts which, as a

whole, exhibits one or more properties [. . .] not obvious from the properties

of the individual parts.” Essentially, network is a visual way of analyzing

and exploring different relationships. When we analyze the whole network, we

can learn new insights that we would not necessarily know just by looking at

individual piece of the network.

Networks are everywhere. There are social networks, such as sexual

networks, criminal networks, and interaction networks over online social net-

working communities (e.g., Facebook, Twitter, and LinkedIn are recent phe-

nomenon). There are also biological networks, including protein-protein inter-

action networks, neuronal networks, food webs, and species interaction net-
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works. Business networks, such as financial networks, supply chains, and retail

networks are also prevalent. Many of them are inhomogeneous, consisting of

not only massive nodes but distinct communities. Clustering, or community

structure detection, divides network nodes into groups within which the net-

work connections are dense (i.e., there are more edges between nodes), but

between which they are sparser (i.e., fewer edges) [22]. Clusters are present in

networks, for example, as prospective groups and their friendships on social

media, or as modules of functionally associated proteins in biological networks,

or as a neighborhood community of customers with similar purchasing prefer-

ences, and much more. As such, communities or clusters of highly connected

nodes form an essential feature in the structure of networks, and the identifi-

cation of these communities is essential in answering important questions in a

variety of fields.

Due to the extent and the diversity of contexts in which networks ap-

pear, community detection in network analysis has become a both crucial and

interdisciplinary topic. However, finding clusters or detecting communities

in networks is a challenging task in a wide range of domains, especially for

directed networks. For instance, a directed graph is characterized by asym-

metrical matrices (e.g., adjacency matrix, Laplacian matrix, which we intro-

duce in Section 2.1), so spectral analysis is much more complex. Only a few

methods can be easily extended from the undirected to the directed case [9].

Further, extracting clusters in networks is algorithmically difficult because it is

computationally intractable to search over all possible clustering [27]. This ne-
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cessitates the development of statistically sound methodologies for exploring,

modeling, and interpreting these relationship in networks.

The main goal of this survey paper is to review some of the major sta-

tistical methods and algorithms proposed in the research communities for the

problem of community detection in static networks in a comparative manner.

Some of them are new methods while others extend approaches that have been

previously applied on network analysis. Several of the statistical models and

methodologies we have summarized are shown to perform very well in detect-

ing community structures on a variety of real-world networks like the ones

presented above. To name a few, latent space approaches are applied in social

science where it studies marriage and business relations [14]. Stochastic block-

models are used in the analysis of protein-protein interactions where blocks

may correspond to stable protein complexes [11]. Modularity optimization

is applied on marine sciences where it successfully detects the main two-way

division of the dolphin social network [20].

The rest of the paper is organized as follows. In Chapter 2, we provide

the basic terminology and background used throughout this survey. Then in

Chapter 3, we present main clustering approaches developed for both undi-

rected and directed networks. We also present an empirical comparison of the

main methods that have been reviewed throughout this paper. In Chapter 4,

we introduce R’s package “igraph” for community detection in network analy-

sis and present a data example by using one of its built-in algorithms. Finally

in Chapter 5, we draw conclusions from this overview by summarizing this
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survey and inferring future research directions. For an extensive review, see

Goldenberg et al. [11] which provides a review of the literature of statistical

modeling and analysis of networks including discussions of both static and

dynamic network modeling.
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Chapter 2

Basic Terminology and the Quality

Measurement

In this chapter we provide basic terminology and background used in

network analysis. We firstly introduce the notation and terminology, includ-

ing some basic graph theory and linear algebraic concepts. Then we describe

briefly the major metrics used to quantify the quality of a community in net-

works.

2.1 Basic Network Notation and Terminology

For the purpose of describing various methods and algorithms, we in-

troduce the following notations. A graph or a network G is often defined in

terms of nodes and edges: G ≡ G(N,E), where N represents the node set and

E is the edge set. In computer science, networks contain nodes and edges;

while in social sciences, the corresponding terminology is actors and ties [11].

In this review, we use these terms interchangeably.

A basic property of the nodes in a graph is their degree, that is, the

number of edges that connect to this node. The degree matrix is defined as

the diagonal and positive N × N matrix D, with the degree of each node in

5



the main diagonal and zeros outside the main diagonal.

Edges may be undirected as in the Erdös-Rényi-Gilbert model, or di-

rected as in the Holland and Leinhardt’s p1 model. In a directed graph, the

edge set E contains an ordered pair of nodes (i, j) if there is an edge, or re-

lationship, from the node i to node j; in an undirected one, if the edge set

contains (i, j), then (j, i) as well. The edge set E can be represented by the

adjacency matrix Y of size N × N with binary elements in a setting where

we only concern about the presence or absence of edges: Y ∈ {0, 1}N×N , thus

G ≡ G(N, Y ) and

Yi,j =

{
1, if (i, j) is in the edge set

0, otherwise
. (2.1)

As such, for undirected relations where Yj,i = Yi,j, the adjacency matrix is

symmetric; while in a directed network, Y is not necessarily symmetric.

Other than using an adjacency matrix Y represent a graph G, we can

also associate each graph with its Laplacian matrix that is defined using linear

algebraic concepts. Given a simple graph G with n nodes, its Laplacian matrix

LN×N is defined as

L = D − Y, (2.2)

where D is the degree matrix and Y is the adjacency matrix of the graph.

The symmetric normalized Laplacian matrix is defined as:

Lsym = D−1/2LD−1/2 = I −D−1/2Y D−1/2, (2.3)

where L is the (unnormalized) Laplacian, Y is the adjacency matrix, and D

is the degree matrix.
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2.2 Quality Measure by Modularity

In practical situations, communities within a network are often not

known beforehand. This raises the following question: how to measure whether

the community structure found by the algorithm is a good one? Modularity,

which is proposed by Newman and Girvan [22], is one of the most popular

and widely used metrics to evaluate the quality of network’s division into

communities. Informally, the modularity Q of each possible partition will be:

Q = (fraction of edges within communities)− (expected fraction of edges).

(2.4)

More precisely, consider a particular division of a network into k com-

munities. Define a k×k symmetric matrix e whose element eij is the fraction of

all edges in the network that link nodes in community i to nodes in community

j. Then

Q =
∑
i

(eii − a2i ) = Tr(e)− ‖ e2 ‖, (2.5)

where ai is the row (or column) sums
∑

j eij which represents the fraction of

edges that connects to nodes in community i, the trace of matrix e, Tr(e) =∑
i eii, gives the fraction of edges in the network that connect nodes in the

same community, and ‖ x ‖ indicates the sum of elements of the matrix x.

Clearly, larger positive values of modularity indicate better division into

communities since there are more edges within communities than one would

expect if edges were placed in random. If the number of within-community
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edges is no better than random, Q = 0; while Q is approaching to 1, which is

the maximum, it indicates networks with strong community structure [22].

Other than being used as quality measure for a specific network par-

tition, modularity can also be used for detecting community structures in

networks [20]. This procedure is described in more detail in Section 3.5.
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Chapter 3

Existing Methodologies

This chapter firstly summarizes some of original work that has been

done on analyzing network models: the research originates with the Erdös-

Rényi-Gilbert random graph model ([7], [10]), and the p1 model of Holland

and Leinhardt [17] in some sense generalizes the Erdös-Renyi-Gilbert model.

Section 3.2 discusses the stochastic blockmodels, which is a special version of p1

model that could be used to describe a random graph model with predefined

blocks. Section 3.3 summarizes latent space approaches for social network

analysis by Hoff et al. [14], followed by Handcock et al. [12]’s latent position

cluster model, which is an application of the latent space model for clustering.

Section 3.4 describes spectral clustering and the high-dimensional stochastic

blockmodel proposed by Rohe et al. [27]. Finally in Section 3.5, we describe

modularity’s usage for detecting community structure in networks.

3.1 The Erdös-Rényi-Gilbert Random Graph Model and
the p1 Model

For a binary graph with conditionally independent edges, each edge

outcome yi,j is a dichotomous variable indicating the presence (yi,j = 1) or

absence (yi,j = 0) of some relation or edge. It can be expressed as a Bernoulli
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binary random variable with probability of presence πij.The simplest case of

this class of network probability models was introduced contemporaneously

by Erdös and Rényi [7] and Gilbert[10]: known as the Erdös-Rényi-Gilbert

random graph model. This basic model describes an undirected graph involv-

ing N nodes and a fixed number of edges E, chosen randomly from m =
(
N
2

)
possible edges in the graph G. All edges essentially have the same probability

πij = p of presence and are independent from one another, thus the binomial

likelihood of the Erdös-Rényi-Gilbert random graph model G(N, p) is

l(G(N, p) has E edges |p) = pE(1− p)m−E, (3.1)

or, equivalently in terms of the N ×N adjacency matrix Y

l(Y |p) =
∏
i 6=j

pYij(1− p)1−Yij . (3.2)

Empirically there are few observed networks with such simple structure

as in the Erdös-Rényi-Gilbert random graph model. This has led to the p1

model of Holland and Leinhardt [17], which began with a directed version of the

Erdös-Renyi-Gilbert random graph model and proposed that three parameters

affect the outcome of a dyad with directed edges: 1). “reciprocity” ρ, that is,

the tendency of yi,j = yj,i; 2). “gregariousness” α of an actor, that is, how

likely one is to have outgoing ties; 3). the “popularity” β of an actor, that is,

how likely one is to have incoming ties.

Let P (0, 0) be the probability for the absence of an edge between i and

j, Pij(1, 0) the probability of i linking to j (“1” indicates the outgoing node of
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the edge), Pij(1, 1) the probability of i linking to j and j linking to i. Given a

parameter for the overall density of edges θ, the p1 model posits the following

probabilities [17]:

logPij(0, 0) = λij,

logPij(1, 0) = λij + αi + βj + θ,

logPij(0, 1) = λij + αj + βi + θ,

logPij(1, 1) = λij + αi + βj + αj + βi + 2θ + ρij,

(3.3)

where λij is a normalized constant to ensure that the total probabilities for

each dyad (i, j) add up to 1.

The form of the joint likelihood for the p1 model is in exponential family

form,

logP (Y = y) ∝ θy++ +
∑
i

αiyi+ +
∑
j

βjy+j + ρ
∑
ij

yi,jyj,i, (3.4)

where a “+” denotes summing over the corresponding subscript. The min-

imum sufficient statistics are the in-degree (i.e., yi+) and out-degree (i.e.,

y+j) for each node and the number of dyads with reciprocated edges (i.e.,∑
ij yijyji). Holland and Leinhardt [17] presented an iterative proportional

fitting method for maximum likelihood estimation for this model.

A major problem with the Erdös-Rényi-Gilbert random graph model

and the p1 model is that the complexities involved in assessing goodness-of-

fit procedures for the model [17]. Also, these models are restrictive as they

assume the
(
N
2

)
dyads (yij, yji) to be independent [14].
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3.2 Stochastic Blockmodels

Community detection, in another sense, is to search for an optimal

partition of the nodes in a network into groups or blocks. This is known as

blockmodeling. Many researchers have extended the p1 model to blockmodels.

For example, within the framework of p1 model and its exponential family gen-

eralizations, Nowicki and Snijders ([30], [23]) developed models for a restricted

version of the blockmodel in which group membership is not observed. Block-

modeling is becoming a common approach in network analysis to decompose

a graph.

The stochastic blockmodel, introduced by Holland et al. [16], is a spe-

cial version of p1 model that could be used to describe a random graph model

with predefined blocks. This model tends to produce graphs containing com-

munities characterized by being connected with one another with particular

edge densities. For example, edges may be more common within communities

than between communities. It is also an example of the more general latent

space model of a random network by Hoff et al. [14] which we will describe in

more detail in Section 3.3.

The idea that nodes heavily interconnected should form a block or com-

munity forms the basic of stochastic blockmodel. The nodes are reordered to

display the blocks down the diagonal of the adjacency matrix Y . Further,

the connections between nodes in different blocks appear in much sparser off-

diagonal blocks. In model-based approaches, the partition of the nodes max-

imizes the likelihood function linked to the model, whereas most algorithmic
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solutions maximize ad hoc criteria related to the “density” of links within and

between blocks [11].

An important assumption of stochastic blockmodel relies on the intu-

itive notion of structural equivalence; that is, the probability of connectivity

between (i1, j1) is the same as that of (i2, j2) if nodes i1 and j1 are in the same

respective latent classes as i2 and j2 [14]. As such, it is useful in the analysis

of social relations where blocks may correspond to social factions, as well as

in the analysis of protein-protein interactions where blocks may correspond to

stable protein complexes.

The stochastic blockmodel is characterized by the fact that each node

belongs to one of multiple blocks and the probability of a relationship between

two nodes depends only on the block memberships of the two nodes. If the

probability of an edge between two nodes in the same block is larger than the

probability of an edge between two nodes in different blocks, then the blocks

produce communities in the random networks generated from the model [27].

However, stochastic blockmodel is restrictive, as they only fit well when

stochastic equivalence for clusters of individuals holds but not when many

actors fall between clusters, or when relations are transitive yet there is no

strong clustering[14].
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3.3 Latent Space Approaches

Latent variable model is generally used when some variables are not di-

rectly observable but are accounting for the unobserved heterogeneity between

subjects. Hoff et al. [14] proposed a class of latent space models in the context

of social network analysis in 2002. The intuition at the core of their models is

that each actor is assumed to have a latent position, zi, in a social space and

since the positions are unknown, the social space is a latent variable.

In their methods, Hoff et al. [14] modeled the positions as belonging

to a low-dimensional Euclidean space. As such, the existence of an edge in

the adjacency matrix, Yi,j = 1, is determined by the distance, d(zi, zj), among

the corresponding pair of actors in the low-dimensional space, and also by the

values of a number of covariates observed on each actor individually if further

covariate information is available. Therefore, the model derives the proba-

bility from the distance between latent representations. That is, actors are

likely to be in a relationship if their latent representations are close according

to the Euclidean distance. Assuming that the presence or absence of a tie

between two individuals is independent of all other ties in the system, given

the unobserved positions in social space of the two individuals, the conditional

probability model for the adjacency matrix Y is

P (Y |Z,X,Θ) =
∏
i 6=j

P (yi,j|zi, zj, xi,j,Θ), (3.5)

where X are observed covariates, Θ are parameters, and Z are the posi-

tions of actors in the low-dimensional latent space. Each relationship Yi,j
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is a sample from a Bernoulli distribution whose natural parameter depends

on zi, zj, xi,j,Θ. In their model, Hoff et al. [14] generated the paired observa-

tions Yi,j starting from the corresponding pair of actors representations (zi, zj)

through a distance model, pair-specific and vector-valued covariates xi,j for

dyad (i, j), and parameters Θ = (α, β).

A convenient parameterization of P (Y |Z,X,Θ) is then the log-odds

ratio:

log
P (Yi,j = 1)

1− P (Yi,j = 1)
= α + β

′
xi,j − |zi − zj| = ηi,j, (3.6)

and the corresponding log-likelihood function is

logP (Y |η) =
∑
i 6=j

{ηi,jyi,j − log(1 + eηi,j)}. (3.7)

The log-likelihood function, which is equivalent to the likelohood func-

tion of nonlinear logistic regression models, can be maximized to obtain maximum-

likelihood estimates. Another feasible approach is based on Bayesian inference.

Given prior information on α, β, and Z, use Gibbs sampling to sample from

the posterior distribution of α, β, and Z. However, distances between a set of

points in Euclidean space are invariant under rotation, reflection, and trans-

lation. Hoff et al. [14] addressed this problem by using a ”Procrustean”

transformation to rotate and reflect these posterior draws to be as close as

possible to a reference configuration.

Hoff et al. [14] proposed a model that has several advantages over the

previous described models. In addition to improving on model fit, modeling
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the positions as belonging to a low-dimensional Euclidean space provided a

model-based spatial representation of network relationships. Also, it allowed

statistical uncertainty in the social space to be quantified and graphically rep-

resented. The model is flexible and able to deal with missing data. Finally,

the model is inherently transitive. The latent space model has been recently

extended in a number of directions to include treatment of transitivity, ho-

mophily on actor-specific attributes, clustering, and heteroheneity of nodes

[11]. For future works, it may be desirable to allow for further dependence

in the model [14] and scalability issues remain to be addressed before larger

networks can be analyzed [11].

3.3.1 The Latent Position Cluster Model

The latent space model has been recently extended in a number of di-

rections ([15], [13], [29]). Recall that in latent space approaches, each actor

has a latent position in a low-dimensional Euclidean space with potential fur-

ther information on covariates. Handcock et al. [12] extended this approach

through a combination of latent space models with model-based clustering,

thus proposed the latent position cluster model.

To allow joint inference on latent positions and clustering, the latent

position cluster model combines the original latent space model with a finite

mixture of Gaussians approach to clustering. That is to say, the authors

assumed that the zis are drawn from a finite mixture of G multivariate normal

distributions, each representing a different group of actors. Thus
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P (Y |Z,X,Θ) =
∏
i 6=j

P (yi,j|zi, zj, xi,j,Θ)

zi ∼
G∑
g=1

λgMVNd(µg, σ
2
gId)

(3.8)

where λg is the probability that an actor belongs to the gth group so that∑G
g=1 λg = 1, and Id is the d× d identity matrix.

For estimating the latent positions and the model parameters, Hand-

cock et al. [12] found that a fully Bayesian method that uses Markov chan

Monte Carlo (MCMC) sampling performs better than using maximum likeli-

hood estimation procedure. The latent position cluster model captures tran-

sitivity, homophily on attributes, and clustering simultaneously. As a result,

it can be viewed as not only a stochastic blockmodel with transitivity within

blocks and homophily on attributes, but also a generalization of latent class

models to allow heterogeneity of structure within the classes [12].

3.4 Spectral Clustering and the High-dimensional Stochas-
tic Blockmodel

Spectral clustering is a nonparametric algorithm initialed by the work

of Donatha and Hoffman [6] and Fiedler [8], and can identify the connected

components in a graph (if there are any) by making use of the eigenvalues of

the similarity matrix of the data to perform dimensionality reduction before

clustering in fewer dimensions. In the context of network analysis, spectral

clustering is a popular and computationally feasible method to discover com-
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munities in undirected networks. The similarity matrix, which is provided as

an input, is the adjacency matrix Y that we introduced in the equation 2.1.

Define the symmetric normalized graph Laplacian L as

L = D−1/2Y D−1/2 (3.9)

where D is the degree matrix, and

Dii =
∑
k

Yi,k. (3.10)

Note that this definition does not contradict with that in the equa-

tion 2.3. For spectral clustering, the difference is immaterial because both

definitions have the same eigenvectors.

Rohe et al. [27] studied the performance of spectral clustering, a non-

parametric method, on a parametric task of partitioning graphs into blocks

in the stochastic blockmodel. Basically, they bound the number of nodes

“misclustered” for networks generated from the stochastic blockmodel using

spectral clustering. Specifically, the algorithm for k many clusters is defined

in the following way:

1. Take the symmetric adjacency matrix Y ∈ {0, 1}n×n as input.

2. Find the eigenvectors X1, . . . , Xk ∈ Rn corresponding to the k eigenval-

ues of L that are largest in absolute value. Since L is symmetric, choose

these eigenvectors to be orthogonal. By putting the eigenvectors into

the columns, form the matrix X = [X1, . . . , Xk] ∈ Rn×k.

18



3. Treating each of the n rows in X as a point in Rk, run k-means with k

clusters. This creates k nonoverlapping sets A1, . . . , Ak whose union is

1, . . . , n.

4. Output: A1, . . . , Ak. This means that node i is assigned to cluster g if

the i-th row of X is assigned to Ag in step 3.

In their paper, Rohe et al. [27] showed two main results. The first

main result is that under the more general latent space model, the top k eigen-

vectors of the normalized graph Laplacian L are consistent, in the sense that

they asymptotically converge to the eigenvectors of a ”population” normalized

graph Laplacian as the number of nodes n grows to infinity. They also pro-

vided guarantees on the performance of a spectral clustering algorithm based

on the normalized Laplacian.

The second main result, by assuming the probability of an edge between

two nodes is p, if p 6= 0 and k = O(n1/4/logn), then the number of nodes that

might be misclustered by running k-means is:

|M | = o(k3(log n)2). (3.11)

This proves that if the minimum expected degree grows fast enough and the

smallest nonzero eigenvalue of the population normalized graph Laplacian

shrinks slowly enough, then the proportion of nodes that are misclustered

by spectral clustering converges to zero:

|M |
n

= o(n−1/4). (3.12)
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The asymptotic framework proposed by Rohe et al. [27] allows the

number of clusters in the stochastic blockmodel to grow with the number of

nodes, hence it makes the problem one of “high-dimensional” learning.

Rohe et al. [27]’s spectral clustering provides a computationally ap-

pealing alternative to maximum likelihood fitting in practice. However, they

only considered graphs where the expected degrees of nodes in the same clus-

ter are equal. Further, studying spectral clustering under more realistic degree

distributions is an area for future research.

3.5 Modularity Optimization

As we discussed in Section 2.2, modularity is one of the most popular

and widely used metrics to evaluate the quality of network’s division into

communities. In this section, we described its function for extracting the

community structure in networks.

Newman [20] has proposed an approach to the discovery of community

structure based on the modularity Q defined in the equation 2.5 [20]. Recall

that the modularity is defined as

Q =
∑
i

(eii − a2i ), (3.13)

where matrix e has element eij that is the fraction of all edges in the network

that link nodes in community i to nodes in community j, ai represents the

fraction of edges that connect to nodes in community i and ai =
∑

j eij.

Since we learned from Section 2.2 that a high value of Q represents a
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good community division, Newman [20] proposed that one ought to be able to

find the best communities in a network by optimizing Q over all possible divi-

sions. Specifically, the author offered a greedy algorithm that starts with each

node in a separate community on its own, and repeatedly join communities to-

gether in pairs, choosing at each step the join that gives the greatest increase

(or smallest decrease) in Q. Thus, the whole procedure can be represented

as a “dendrogram,” a tree that shows the order of the joins. The optimal

cross-section of the “dendrogram” is found by looking for the maximal value

of Q.

The main advantage of Newman [20]’s modularity optimization algo-

rithm is its speed, which allows the analysis of large networks where communi-

ties are substantial in size and composed of many individuals. In addition, it

provided a useful tool for visualizing and understanding the structure of the-

ses networks, whose daunting size has hitherto made many of their structural

properties obscure [20]. However, in more recent Bickel and Chen’s study [1],

the authors imply that using modularity scores are (asymptotically) biased: it

leads to incorrect community structure discovery even in the favorable case of

large networks.
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Chapter 4

Application in R

In this chapter, we introduce the R’s package “igraph” for community

detection in network analysis. Then we present how one could conduct this

type of analysis using one of its various built-in algorithms on a data example.

4.1 R package - igraph

There are several ways to do community partitioning of graphs using

very different packages. The most popular package is “igraph”. Not only that

95% of what one will need in network analysis is available in “igraph”, but

that the libraries are written in C and therefore are fast.

In the “igraph” package there are a few already implemented com-

munity detection algorithms for clustering, partitioning, and segmenting a

network, including some we have introduced in Chapter 3:

• edge.betweenness.community [22]: a divisive algorithm where at

each step the edge with the highest betweenness is removed from the

graph. For each division one can compute the modularity of the graph

and then choose to cut the “dendrogram” where the process gives the

highest value of modularity.
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• fastgreedy.community [5]: the algorithm is agglomerative and at each

step the merge is decided by the optimization of modularity that it pro-

duces are the result of the merge.

• label.propagation.community [25]: a nearly linear time algorithm by

labeling the vertices with unique labels and then updating the labels by

majority voting in the neighborhood of the vertex.

• leading.eigenvector.community [21]: tries to find densely connected

subgraphs in a graph by calculating the leading non-negative eigenvector

of the modularity matrix of the graph.

• multilevel.community [2] (the Louvain method) implements the multi-

level modularity optimization algorithm which is based on the modular-

ity mearsure and a hierarchical approach.

• optimal.community [3] calculates the optimal community structure of

a graph by maximizing the modularity measure over all possible parti-

tions.

• spinglass.community [26] uses as spin-glass model and simulated an-

nealing to find the communites inside a network.

• walktrap.community [24] finds densely connected subgraphs by per-

forming random walks. The idea is that random walks will tend to stay

inside communities instead of jumping to other communities.
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• infomap.community [28] finds community structure that minimizes

the expeted description length of a random walker trajectory.

All of these methods return a “communities” object, which one can then

use to explore, plot, and compute metrics. For documentation on how to use

“igraph”, a manual is available at http://igraph.org/r/doc/aaa-igraph-package.

html.

4.2 Data Examples

Here we use a data example of student networks from the lab source

of the Social Network Analysis Group at Stanford University [18] to illustrate

how those community detection algorithms in the R package “igraph” can be

used.

The task is to identify friendship groups or communities and to discern

the best fitting community structure in an undirected network as shown in the

Figure 4.1. Note that for clarity and simplicity, we removed isolated vertices.

There are many different functions as we have shown in previous sec-

tion that can be used in the package “igraph”. We chose to use the edge-

betweenness algorithm from Newman [22].

As discussed above, the idea of the edge-betweenness algorithm is that

it is likely that edges connecting separate cluster have high edge-betweenness,

as all the shortest paths from one cluster to another must traverse through

them. So iteratively remove the edge with the highest betweenness from the
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Figure 4.1: Plot for friend layout

graph, we will get a hierarchical map of the communities in the graph, called a

“dendrogram” (see Figure 4.2). The leafs of the tree are the individual vertices

and the root of the tree represents the whole graph. As such, we can tell from

the “dendrogram” that there are three clusters in this network.

Figure 4.3 shows all modularities for each merge/division. From that,

we can then choose to cut the “dendrogram” where the process gives the

highest value of modularity. Figure 4.4 shows the colored nodes according to

their membership after the clustering process.
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Figure 4.2: Visualization as a dendrogram

Figure 4.3: Modularity for each merge
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Figure 4.4: Colored nodes according to membership
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Chapter 5

Conclusion and Future Directions

In this survey we have reviewed several statistical methodologies for ex-

ploring, modeling, and interpreting community structures in network data. We

firstly introduced some basic notation and concepts in graph theory and linear

algebra (Section 2.1), followed by describing the modularity quality measure

(Section 2.2). Then we discussed some of the earliest works in this field, such

as the Erdös-Rényi-Gilbert random graph model and the p1 model (Section

3.1). However, as we have pointed out, these approaches have shortcomings

as far as the complexities involved in assessing goodness-of-fit procedures and

also concerning on the analysis of large real-world networks. This leads to

various new models being developed that are flexible enough to apply on gen-

eral network structures in the last few years. We have presented the popular

stochastic blockmodels (Section 3.2). We have also described in detail several

major approaches that is based on and extended from earlier works, includ-

ing the latent space approaches(Section 3.3), the latent position cluster model

(Section 3.3.1), spectral clustering algorithms (Section 3.4), as well as modu-

larity optimization (Section 3.5). Moreover, we introduced the most popular

R’s package for community detection in network analysis - “igraph” and pre-

sented a data example by using one of its built-in algorithms (Chapter 4).
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The main goal of this survey report is to review these major statis-

tical methods and algorithms proposed so far for the problem of community

detection in networks and outlined each method’s strengths and weaknesses.

But there are many issues that are remained to be solved, such as on network

visualization, computability, and assessing goodness of fit. Therefore, we feel

that there is still scope for developing systematic ways to visualize commu-

nity structures in networks in the areas of inference and dynamic modeling.

For example, creating or extending an existing model (e.g., bayesian models

and placing its prior on partitions) in a way that provides inference mech-

anisms which can infer parameters of large scale networks would be a great

breakthrough to the statistical network modeling community.
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