23 research outputs found

    Randomized block Gram-Schmidt process for solution of linear systems and eigenvalue problems

    Full text link
    We propose a block version of the randomized Gram-Schmidt process for computing a QR factorization of a matrix. Our algorithm inherits the major properties of its single-vector analogue from [Balabanov and Grigori, 2020] such as higher efficiency than the classical Gram-Schmidt algorithm and stability of the modified Gram-Schmidt algorithm, which can be refined even further by using multi-precision arithmetic. As in [Balabanov and Grigori, 2020], our algorithm has an advantage of performing standard high-dimensional operations, that define the overall computational cost, with a unit roundoff independent of the dominant dimension of the matrix. This unique feature makes the methodology especially useful for large-scale problems computed on low-precision arithmetic architectures. Block algorithms are advantageous in terms of performance as they are mainly based on cache-friendly matrix-wise operations, and can reduce communication cost in high-performance computing. The block Gram-Schmidt orthogonalization is the key element in the block Arnoldi procedure for the construction of Krylov basis, which in its turn is used in GMRES and Rayleigh-Ritz methods for the solution of linear systems and clustered eigenvalue problems. In this article, we develop randomized versions of these methods, based on the proposed randomized Gram-Schmidt algorithm, and validate them on nontrivial numerical examples

    Inference in Linear Observations with Multiple Signal Sources: Analysis of Approximate Message Passing and Applications to Unsourced Random Access in Cell-Free Systems

    Full text link
    Here we consider a problem of multiple measurement vector (MMV) compressed sensing with multiple signal sources. The observation model is motivated by the application of {\em unsourced random access} in wireless cell-free MIMO (multiple-input-multiple-output) networks. We present a novel (and rigorous) high-dimensional analysis of the AMP (approximate message passing) algorithm devised for the model. As the system dimensions in the order, say O(L)\mathcal O(L), tend to infinity, we show that the empirical dynamical order parameters -- describing the dynamics of the AMP -- converge to deterministic limits (described by a state-evolution equation) with the convergence rate O(L12)\mathcal O(L^{-\frac 1 2}). Furthermore, we have shown the asymptotic consistency of the AMP analysis with the replica-symmetric calculation of the static problem. In addition, we provide some interesting aspects on the unsourced random access (or initial access) for cell-free systems, which is the application motivating the algorithm

    Randomized block Gram-Schmidt process for solution of linear systems and eigenvalue problems

    Get PDF
    We propose a block version of the randomized Gram-Schmidt process for computing a QR factorization of a matrix. Our algorithm inherits the major properties of its single-vector analogue from [Balabanov and Grigori, 2020] such as higher efficiency than the classical Gram-Schmidt algorithm and stability of the modified Gram-Schmidt algorithm, which can be refined even further by using multi-precision arithmetic. As in [Balabanov and Grigori, 2020], our algorithm has an advantage of performing standard high-dimensional operations, that define the overall computational cost, with a unit roundoff independent of the dominant dimension of the matrix. This unique feature makes the methodology especially useful for large-scale problems computed on low-precision arithmetic architectures. Block algorithms are advantageous in terms of performance as they are mainly based on cache-friendly matrix-wise operations, and can reduce communication cost in high-performance computing. The block Gram-Schmidt orthogonalization is the key element in the block Arnoldi procedure for the construction of Krylov basis, which in its turn is used in GMRES and Rayleigh-Ritz methods for the solution of linear systems and clustered eigenvalue problems. In this article, we develop randomized versions of these methods, based on the proposed randomized Gram-Schmidt algorithm, and validate them on nontrivial numerical examples

    An efficient implementation of the block Gram--Schmidt method

    Get PDF
    The block Gram--Schmidt method computes the QR factorisation rapidly, but this is dependent on block size mm. We endeavor to determine the optimal mm automatically during one execution. Our algorithm determines mm through observing the relationship between computation time and complexity. Numerical experiments show that our proposed algorithms compute approximately twice as fast as the block Gram--Schmidt method for some block sizes, and is a viable option for computing the QR factorisation in a more stable and rapid manner. References Bjorck, A., Numerical Methods for Least Squares Problems, SIAM, (1996). Elden, L., and Park, H., Block Downdating of Least Squares Solutions, SIAM J. Matrix Anal. Appl., 15:1018--1034 (1994). doi:10.1137/S089547989223691X Runger, G., and Schwind, M., Comparison of Different Parallel Modified Gram--Schmidt Algorithms, Euro-Par 2005, LNCS 3648:826--836 (2005). doi:10.1007/11549468_90 Katagiri, T., Performance Evaluation of Parallel Gram--Schmidt Re-orthogonalization Methods, VECPAR 2002, LNCS 2565:302--314 (2003). doi:10.1007/3-540-36569-9_19 Matrix Market, Mathematical and Computational Sciences Division, Information Technology Laboratory of the National Institute of Standards and Technology, USA. http://math.nist.gov/MatrixMarket/ Matsuo, Y. and Nodera, T., The Optimal Block-Size for the Block Gram--Schmidt Orthogonalization, J. Sci. Tech, 49:348--354 (2011). Moriya, K. and Nodera, T., The DEFLATED-GMRES(m, k) Method with Switching the Restart Frequency Dynamically, Numer. Linear Alg. Appl., 7:569--584 (2000). doi:10.1002/1099-1506(200010/12)7:7/8<569::AID-NLA213>3.0.CO;2-8 Moriya, K. and Nodera, T., Usage of the convergence test of the residual norm in the Tsuno--Nodera version of the GMRES algorithm, ANZIAM J., 49:293--308 (2007). doi:10.1017/S1446181100012852 Liu, Q., Modified Gram--Schmidt-based Methods for Block Downdating the Cholesky Factorization, J. Comput. Appl. Math., 235:1897--1905 (2011). doi:10.1016/j.cam.2010.09.003 Saad, Y. and Schultz, M. H., GMRES: A Generalized Minimal Residual Algorithm for Solving Nonsymmetric Linear Systems, SIAM J. Sci. Stat. Comput., 7:856--869 (1986). doi:10.1137/0907058 Shiroishi, J. and Nodera, T., A GMRES(mm) Method with Two Stage Deflated Preconditioners, ANZIAM J., 52:C222--C236 (2011). http://journal.austms.org.au/ojs/index.php/ANZIAMJ/article/view/3984 Leon, S. J., Bjorck, A., and Gander, W., Gram--Schmidt Orthogonalization: 100 years and more, Numer. Linear Algebra Appl., 20:492--532 (2013). doi:10.1002/nla.1839 Stewart, G. W., Block Gram--Schmidt Orthogonalization, SIAM J. Sci. Comput., 31:761--775 (2008). doi:10.1137/070682563 Vanderstraeten, D., An Accurate Parallel Block Gram-Schmidt Algorithm without Reorthogonalization, Numer. Lin. Alg. Appl., 7:219--236 (2000). doi:10.1002/1099-1506(200005)7:4<219::AID-NLA196>3.0.CO;2-L Yokozawa, T., Takahashi, T., Boku, T. and Sato, M., Efficient Parallel Implementation of Classical Gram-Schmidt Orthogonalization Using Matrix Multiplication, (in Japanese) Information Processing Society of Japan (IPSJ), Computing System, 1:61--72 (2008)

    Velocity estimation via model order reduction

    Full text link
    A novel approach to full waveform inversion (FWI), based on a data driven reduced order model (ROM) of the wave equation operator is introduced. The unknown medium is probed with pulses and the time domain pressure waveform data is recorded on an active array of sensors. The ROM, a projection of the wave equation operator is constructed from the data via a nonlinear process and is used for efficient velocity estimation. While the conventional FWI via nonlinear least-squares data fitting is challenging without low frequency information, and prone to getting stuck in local minima (cycle skipping), minimization of ROM misfit is behaved much better, even for a poor initial guess. For low-dimensional parametrizations of the unknown velocity the ROM misfit function is close to convex. The proposed approach consistently outperforms conventional FWI in standard synthetic tests.Comment: 5 pages, 3 figures, to be presented at IMAGE 202

    An overview of block Gram-Schmidt methods and their stability properties

    Full text link
    Block Gram-Schmidt algorithms serve as essential kernels in many scientific computing applications, but for many commonly used variants, a rigorous treatment of their stability properties remains open. This survey provides a comprehensive categorization of block Gram-Schmidt algorithms, particularly those used in Krylov subspace methods to build orthonormal bases one block vector at a time. All known stability results are assembled, and new results are summarized or conjectured for important communication-reducing variants. Additionally, new block versions of low-synchronization variants are derived, and their efficacy and stability are demonstrated for a wide range of challenging examples. Low-synchronization variants appear remarkably stable for s-step-like matrices built with Newton polynomials, pointing towards a new stable and efficient backbone for Krylov subspace methods. Numerical examples are computed with a versatile MATLAB package hosted at https://github.com/katlund/BlockStab, and scripts for reproducing all results in the paper are provided. Block Gram-Schmidt implementations in popular software packages are discussed, along with a number of open problems. An appendix containing all algorithms type-set in a uniform fashion is provided.Comment: 42 pages, 5 tables, 17 figures, 20 algorithm
    corecore