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Abstract

The block Gram–Schmidt method computes the qr factorisation
rapidly, but this is dependent on block size m. We endeavor to deter-
mine the optimal m automatically during one execution. Our algorithm
determines m through observing the relationship between computa-
tion time and complexity. Numerical experiments show that our pro-
posed algorithms compute approximately twice as fast as the block
Gram–Schmidt method for some block sizes, and is a viable option for
computing the qr factorisation in a more stable and rapid manner.
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1 Introduction

The orthogonalisation process or the qr factorisation by the Gram–Schmidt
method is arguably one of the most important processes in a linear algebraic
computation and there are numerous studies on this subject [3, 4, 6, 12, 13, 14,
15]. It is frequently used to solve least squares and eigenvalue problems which
arise in signal processing, structural mechanics or magnetohydrodynamics [1,
2, 4, 9, 12]. Other applications that are commonly used for solving linear
systems are Krylov subspace methods, like gmres [10], which are derived
from partial difference equations by using finite difference or finite element
discretisations [7, 8, 11].

The gmres method resorts to an orthogonalisation process with the modified
Gram–Schmidt method (mgs), and hence we focus on a more efficient and
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faster implementation of the qr factorisation using the block Gram–Schmidt
method (bgs) which is used to solve the least squares problem or singular
value decomposition. The bgs enables us to compute the qr factorisation
quickly by partitioning matrix X into columns and then orthogonalizing into
blocks of size m. Stewart [13] illustrated how the computation time of the qr
factorisation is shortened by employing the bgs. We find that the bgs is two
or three times faster than the classical Gram–Schmidt (cgs) in some instances.
This is because the bgs has matrix-matrix products and the algorithms are
implemented with a level-3 blas (basic linear algebra subprogram). According
to Yokozawa [15], a level-3 blas is approximately four times faster than a
level-2 blas which is used to calculate the matrix-vector products in the cgs.
Here we use the bgs algorithm with a level-3 blas [13].

The bgs has the same high parallelisation as the cgs [14]. Recent develop-
ments in supercomputers often make it mandatory to use parallelisation when
employing various methods. The mgs is used in many methods and there is a
lot of literature on parallel versions [3, 4]. However, the mgs is characterized
by low parallelisation and it is difficult to attain high parallelisation.

The bgs is suitable for use in parallel environments, but has issues of its own.
If a less than optimal block size is chosen, then the computation time of the
bgs lengthens significantly. Moreover, since the optimal block size m is not
consistent when employing the bgs, it is necessary to determine m. There
is no unique m for any matrix X when using the bgs and it is necessary to
determine m accurately through trial and error.

Section 2 is a summary of the bgs. In Section 3 new schemes for automatically
determining optimal block sizes are proposed and Section 4 shows how the
bgs is parallelized and adapted to these new schemes. Section 5 analyses data
from our numerical experiments and conclude that our proposed methods are
effective.
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2 The block Gram–Schmidt algorithm

The algorithm and properties of the bgs are summarized in this section.
Let X be an n×n matrix, let m be the block size (to simplify, divide n by m),
let Xblock be an n ×m matrix, and let the orthogonal matrix Q be n × h .
The bgs step for k loops (h = km , k = 1, . . . ,n/m− 1) is

R12k = QT
kXblockk

, (1)

Ŷk = Xblockk
−QR12k , (2)

YkR22k = Ŷk . (3)

To orthogonalize Ŷk the cgs is employed in (3). From (2) and (3), matrix Xblock

satisfies
Xblockk

= QkR12k + YkR22k . (4)

Sometimes Yk lacks orthogonality in the bgs. In such a case, applying (4) to
matrix Yk gives

Yk = QkS12k + ZkS22k , (5)
Xblockk

= QkR12k + (QkS12k + ZkS22k)R22k . (6)

According to Stewart [13], usually one reorthogonalisation is enough for Yk.
Equation (6) is one loop of the bgs with reorthogonalisation. Repeating this
process for every Xblockk

results in the qr factorisation.

Let one multiplication be one unit of computational complexity. Assume that
every column requires reorthogonalisation. At this point, the computational
complexity for one loop is considered. Matsuo and Nodera [6] determined
that the number of multiplications required to calculate one loop, that is the
one loop computational complexity, is

f(h) = 4nmh+ 2nm (m− 1) + (h+m)m2 . (7)
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The computational complexity in its entirety, Sbgs, is the sum over all k of
the number of multiplications in one loop,

Sbgs =

n/m−1∑
k=1

[
4nm2k+ 2nm (m− 1) + (k+ 1)m3

]
. (8)

The computation time of the bgs increases linearly with the number of loops
k = h/m . We ascertain this by observing the computational complexity of
the bgs. Consider the function f(h) in (7); f(h) is a linear function in h and
thus the increase in the complexity of the bgs will be linear in k. Matsuo
and Nodera [6] present a numerical example which showed that the graph of
the computation time is very similar to a linear function.

Figure 1 illustrates the relationship between computation time and block size.
It shows that the computation time of the bgs is different for each block size,
which is a typical characteristic of the bgs. The performance of the blas is
affected by block size [15].

3 Optimal block size

The computation speed of the bgs changes significantly depending on block
size. Conventionally, optimal block size is determined through trial and error.
To address this issue we propose two methods, Scheme A and Scheme B, that
allow us to determine optimal block size automatically.

Scheme A uses (7), determined by Matsuo and Nodera [6], to calculate the
computation time ci from the one loop computational complexity:

ci =
4nmih+ 2nmi(mi − 1) + (h+mi)m

2
i

ti
, (9)

where mi (mi = 2i , i = 2, . . . , 10) is a sample block size and ti is the
computation time of the bgs for one loop. In this scheme we choose m from
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Figure 1: Relationship between block size and computation time

sample block sizes mi. The m that minimizes ci results in the shortest total
computation time for the bgs. The block size which minimizes ci is selected
and named mA.

Scheme B, as shown by Matsuo and Nodera [6], determines m by approxi-
mating the curve in Figure 1. From (8) and (9) the total computation time Ti
is estimated by

Ti = ciSbgsmi
. (10)

Let mi = 4, 8, 16 , let A be a matrix and let x and b be vectors such that

A[i, j] = m4−j
i , x = (x1, x2, x3)T , b = (T1, T2, T3)T .

By solving Ax = b we approximate the curve in Figure 1 with a quadratic
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function. The optimal block size for Scheme B is determined from

mB = min
s∈[0, 12n]

x1s
2 + x2s+ x3 . (11)

One issue is that sometimes these schemes find an inadequate block size that is
either very large or small. This is because these schemes use ci, defined in (9).
Since ti is very small, ci can be affected significantly by ti. Calculating Ti
in (10) produces a poor estimate. In conclusion, these schemes are unable to
identify the optimal block size. We improve on these methods by implementing
two loops of the bgs to compute sample points and a quartic function. As
mentioned in Section 2, the computation time of the bgs increases linearly.
By using two loops, the slope of the linear function (7) is calculated and a
better estimation of Ti is obtained. Let mi = 2, 4, 8, 16, 32 . For each mi, two
loops are executed with the bgs. Then, the computation time for the first
loop ti0 and the computation time for the second loop ti1 , are measured. The
increased computation time for one loop is constant and is approximated by

a = (ti0 − ti1)/mi , (12)

The computation time of the bgs is approximated by

Ti :=
1

2
n2a+ ti0 − a(h−mi) . (13)

Let A be a matrix and let x and b be vectors such that

A[i, j] = m6−j
i , x = (x1, x2, x3, x4, x5)T , b = (T1, T2, T3, T4, T5)T . (14)

In the same manner as Scheme B, the linear equation Ax = b is used to solve
the problem. The curve in Figure 1 is approximated with a quartic function.
Hence, in this scheme, which we name Scheme C, the optimal block size m is
determined from

m = min
s∈[0, 12n]

x1s
4 + x2s

3 + x3s
2 + x4s+ x5 . (15)
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Algorithm 1: The new method, Scheme C, for estimating optimal block
size
Data: X ∈ Rn×n

Result: m
1 begin
2 m1 ←− 1 ;
3 for i = 1 : 5 do
4 mi ←− mi ∗ 2 ;
5 for j = 0 : 1 do
6 tij ←−computation time of the bgs one loop;
7 end
8 a←− (ti0 − ti1)/mi ;
9 T [i]←− 1

2
n2a+ ti0 − a(h−m) ;

10 for j = 5 : 1 do
11 A[ij] = mj−1

i ;
12 end
13 x = (x1, x2, x3, x4, x5)T ;
14 b = (T1, T2, T3, T4, T5)T ;
15 end
16 solve Ax = b ;
17 m←− mins∈[0, 12n]

x1s
4 + x2s

3 + x3s
2 + x4s+ x5 ;

18 end

The new Scheme C is detailed in Algorithm 1. In Algorithm 1 the changes
in the bgs’s computation time are approximated by polynomial functions
using sample points Ti which are estimated by observing the complexity of
the bgs. Instead of ci, we estimated Ti more precisely by using a in (12).
This algorithm is easily applied to the qr decomposition. To achieve this,
Algorithm 1 is simply implemented before the bgs algorithm. This algorithm
needs some additional computation time to determine m, because a number
of calculations with small block size mi must be evaluated.
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4 The parallel block Gram–Schmidt algorithm

When dealing with large scale problems in a parallel environment, it is integral
to parallelize the bgs to speed up computation time. Vanderstraeten [14],
Gudula [3] and Katagiri [4] developed a parallelized Gram–Schmidt process.
Here we parallelize the bgs (pbgs) by employing a column-wise distribution.
In the column-wise distribution, all processing elements (pe) have columns of
matrix Q and Xblock [4].

We parallelize the new scheme, detailed in Section 3, for the pbgs, and name
this parallelized scheme pbgs-m, or Scheme D. The pbgs-m is different from
the pbgs in that the pbgs-m determines the optimal block size automatically.
The critical points of this method are summarized as follows. Firstly, one
pe sends the Xblock to the other pes, and the pbgs with sample point mi

for two loops, is executed. Next, the total computation time Ti of the
pbgs is approximated from (12) and (13) according to the method proposed
in Section 3, using the information from samples Ti and mi. Finally, m is
determined from (15). Algorithm 2 details the pbgs-m algorithm, many parts
of which are similar to Scheme C, detailed in Algorithm 1. In Algorithm 2,
“mypid” refers to the pe number.

5 Numerical experiments

In this section the bgs is evaluated with Algorithm 1 and the pbgs is
evaluated with Algorithm 2. The test matrices selected for these experiments
were bcsstk02, 06, 15 and 19 from the Matrix Market [5], with sizes 112×
112 , 420 × 420 , 3948 × 3948 and 11948 × 11948 , respectively. These are
nonsymmetric real matrices which arise from generalized eigenvalue problems
in structural engineering. The qr factorisation for these matrices are often
used to find eigenpairs. Algorithms were programmed in C-language with
double precision. Block size mtrial is determined by trial and error. Block
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Algorithm 2: pbgs-m method, Scheme D, for estimating optimal block
size
Data: X ∈ Rn×n

Result: m
1 begin
2 m1 ←− 1 ;
3 for i = 1 : 5 do
4 mi ←− mi ∗ 2 ;
5 for j = 0 : 1 do
6 tij ←− computation time of the pbgs loop;
7 end
8 end
9 if mypid=0 then

10 a←− (ti0 − ti1)/mi ;
11 T [i]←− 1

2
n2a+ ti0 − a(h−m) ;

12 for j = 5 : 1 do
13 A[ij]←− mj−1

i ;
14 end
15 x = (x1, x2, x3, x4, x5)T ;
16 b = (T1, T2, T3, T4, T5)T ;
17 solve Ax = b ;
18 m←− minm∈[0, 12n]

x1m
4 + x2m

3 + x3m
2 + x4m+ x5 ;

19 end
20 end
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Table 1: Trial and error bgs compared to bgs with Schemes A, B and C,
using bcsstk matrices.

Problem mtrial tm ma tma mb tmb mc tmc

bcsstk02 60 0.0008 32 0.0013 41 0.0014 51 0.0009
bcsstk06 40 0.065 128 0.076 41 0.066 15 0.077
bcsstk15 80 35.0 1024 64.9 43 39.2 53 37.3
bcsstk19 100 872 1024 1137 43 1035 55 959

sizes ma, mb, mc and md are from the bgs with Scheme A by Matsuo and
Nodera [6], the bgs with Scheme B by Matsuo and Nodera [6], the bgs with
Scheme C detailed in Algorithm 1, and the pbgs with Scheme D detailed in
Algorithm 2, respectively. The t is computation time in seconds and pe is
the number of processor elements.

5.1 The BGS with optimal block size

We compare the qr decomposition of a conventional bgs versus a bgs with
Schemes A, B and C to illustrate the effectiveness of the new method. The
algorithms were run on a Sun Fire X2250 with a 4 Gigabyte main memory.

The data from these numerical experiments are shown in Table 1. Block
sizes ma in Table 1 are very large as the sizes of the matrices are large. In
contrast, mb has similar values for each problem. Block sizes ma, mb and mc

took the nearest valuem for bcsstk02, 15 and 19. The computation times tmc

were faster than tma and tmb . Scheme C’s performance was the best in this
experiment.
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Table 2: Computation times of pbgs and pbgs-m, or Scheme D, with eight
pe and for bcsstk15 with ratio = (t for pbgs)/(t for pbgs-m) .

Algorithm m t (sec) ratio
pbgs 50 35.7 1.96
pbgs 100 21.2 1.17
pbgs 200 15.6 0.86
pbgs 300 16.2 0.89
pbgs-m 180 18.2 1.00

5.2 The PBGS with optimal block size

Numerical experiments were implemented to illustrate the effectiveness of
the pbgs-m Scheme D. The derived algorithm was run on a six core amd
Opteron processor 2439 SE with 12 processors and an Authenticamd with a
2.8GHz cpu. We used eight pes to execute our program. The results of the
numerical experiments are shown in Table 2.

The data in Table 2 for the pbgs-m was not optimal. However, the pbgs-m
was twice as fast as the pbgs when m = 50 . Moreover, when m = 100 , the
pbgs-m was a little bit faster than the pbgs. When m = 200 and 300, the
pbgs-m performed approximately 10% slower than the pbgs.

5.3 Least squares problems

We now show the results of our proposed methods for least squares problems
and compare the accuracy and computation times of bgs and Scheme C.
The numerical environment is the same as in Subsection 5.1. Test matrices
are taken from the Harwell–Boeing test collection [1, pp. 266–268], namely
well1850 and illc1850. Both matrices are of size 1850× 712 . well1850 is
well conditioned and illc1850 is a moderately conditioned problem. The least
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Table 3: Computation times of bgs and Scheme C for well1850 and
illc1850.

well1850 illc1850
Algorithm m t (sec) m t (sec)
bgs 50 0.63 50 0.63
bgs 100 0.75 100 0.74
Scheme C 78 0.70 76 0.69

square problems are defined by taking the exact solution to be x = (1, . . . , 1)T ,
and b = Ax . The main step of the algorithms [1, 9] is solving Rx = QTb
after calculating the qr decomposition, A = QR . The derived algorithm
was run on a six core amd Opteron processor 2439 se with a 2.8GHz cpu.
We present the numerical results in Table 3. Here all methods provide high
accuracy with a relative error of order 10−15. Our proposed method finds an
appropriate block size m, and the computation time of bgs is shorter than
Scheme C when m = 100 and slightly longer than Scheme C when m = 50 .

6 Conclusion

The block Gram–Schmidt and parallel block Gram–Schmidt methods compute
the qr factorisation rapidly. However, determining optimal block size has
always been an issue. To address this issue we developed a new method
that automatically determines block size, and the results of our numerical
experiments, tabulated in Section 5, suggest that it is effective. The proposed
algorithms are based on the computation time and the complexity of the bgs
and are not influenced by the properties of the matrices, and this enables us
to compute the qr factorisation in a stable and efficient manner.

In future studies we will apply our proposed algorithm to larger least squares
problems for the analysis of large data that scientists regularly encounter.
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