44 research outputs found

    Frequency Domain Independent Component Analysis Applied To Wireless Communications Over Frequency-selective Channels

    Get PDF
    In wireless communications, frequency-selective fading is a major source of impairment for wireless communications. In this research, a novel Frequency-Domain Independent Component Analysis (ICA-F) approach is proposed to blindly separate and deconvolve signals traveling through frequency-selective, slow fading channels. Compared with existing time-domain approaches, the ICA-F is computationally efficient and possesses fast convergence properties. Simulation results confirm the effectiveness of the proposed ICA-F. Orthogonal Frequency Division Multiplexing (OFDM) systems are widely used in wireless communications nowadays. However, OFDM systems are very sensitive to Carrier Frequency Offset (CFO). Thus, an accurate CFO compensation technique is required in order to achieve acceptable performance. In this dissertation, two novel blind approaches are proposed to estimate and compensate for CFO within the range of half subcarrier spacing: a Maximum Likelihood CFO Correction approach (ML-CFOC), and a high-performance, low-computation Blind CFO Estimator (BCFOE). The Bit Error Rate (BER) improvement of the ML-CFOC is achieved at the expense of a modest increase in the computational requirements without sacrificing the system bandwidth or increasing the hardware complexity. The BCFOE outperforms the existing blind CFO estimator [25, 128], referred to as the YG-CFO estimator, in terms of BER and Mean Square Error (MSE), without increasing the computational complexity, sacrificing the system bandwidth, or increasing the hardware complexity. While both proposed techniques outperform the YG-CFO estimator, the BCFOE is better than the ML-CFOC technique. Extensive simulation results illustrate the performance of the ML-CFOC and BCFOE approaches

    Penalty function-based joint diagonalization approach for convolutive blind separation of nonstationary sources

    Get PDF
    A new approach for convolutive blind source separation (BSS) by explicitly exploiting the second-order nonstationarity of signals and operating in the frequency domain is proposed. The algorithm accommodates a penalty function within the cross-power spectrum-based cost function and thereby converts the separation problem into a joint diagonalization problem with unconstrained optimization. This leads to a new member of the family of joint diagonalization criteria and a modification of the search direction of the gradient-based descent algorithm. Using this approach, not only can the degenerate solution induced by a unmixing matrix and the effect of large errors within the elements of covariance matrices at low-frequency bins be automatically removed, but in addition, a unifying view to joint diagonalization with unitary or nonunitary constraint is provided. Numerical experiments are presented to verify the performance of the new method, which show that a suitable penalty function may lead the algorithm to a faster convergence and a better performance for the separation of convolved speech signals, in particular, in terms of shape preservation and amplitude ambiguity reduction, as compared with the conventional second-order based algorithms for convolutive mixtures that exploit signal nonstationarity

    Blind source separation the effects of signal non-stationarity

    Get PDF

    Introduction: Independent Component Analysis

    Get PDF
    corecore