5 research outputs found

    On The Positive Definiteness of Polarity Coincidence Correlation Coefficient Matrix

    Full text link
    Polarity coincidence correlator (PCC), when used to estimate the covariance matrix on an element-by-element basis, may not yield a positive semi-definite (PSD) estimate. Devlin et al. [1], claimed that element-wise PCC is not guaranteed to be PSD in dimensions p>3 for real signals. However, no justification or proof was available on this issue. In this letter, it is proved that for real signals with p<=3 and for complex signals with p<=2, a PSD estimate is guaranteed. Counterexamples are presented for higher dimensions which yield invalid covariance estimates.Comment: IEEE Signal Processing Letters, Volume 15, pp. 73-76, 200

    Differential fast fixed-point algorithms for underdetermined instantaneous and convolutive partial blind source separation

    Full text link
    This paper concerns underdetermined linear instantaneous and convolutive blind source separation (BSS), i.e., the case when the number of observed mixed signals is lower than the number of sources.We propose partial BSS methods, which separate supposedly nonstationary sources of interest (while keeping residual components for the other, supposedly stationary, "noise" sources). These methods are based on the general differential BSS concept that we introduced before. In the instantaneous case, the approach proposed in this paper consists of a differential extension of the FastICA method (which does not apply to underdetermined mixtures). In the convolutive case, we extend our recent time-domain fast fixed-point C-FICA algorithm to underdetermined mixtures. Both proposed approaches thus keep the attractive features of the FastICA and C-FICA methods. Our approaches are based on differential sphering processes, followed by the optimization of the differential nonnormalized kurtosis that we introduce in this paper. Experimental tests show that these differential algorithms are much more robust to noise sources than the standard FastICA and C-FICA algorithms.Comment: this paper describes our differential FastICA-like algorithms for linear instantaneous and convolutive underdetermined mixture

    Blind identification of possibly under-determined convolutive MIMO systems

    Get PDF
    Blind identi¯cation of a Linear Time Invariant (LTI) Multiple-Input Multiple-Output (MIMO) system is of great importance in many applications, such as speech processing, multi-access communication, multi-sensor sonar/radar systems, and biomedical applications. The objective of blind identi¯cation for a MIMO system is to identify an unknown system, driven by Ni unobservable inputs, based on the No system outputs. We ¯rst present a novel blind approach for the identi¯cation of a over-determined (No ¸ Ni) MIMO system driven by white, mutually independent unobservable inputs. Samples of the system frequency response are obtained based on Parallel Factorization (PARAFAC) of three- or four-way tensors constructed respectively based on third- or fourth-order cross-spectra of the system outputs. We show that the information available in the higher-order spectra allows for the system response to be identi¯ed up to a constant scaling and permutation ambiguities and a linear phase ambiguity. Important features of the proposed approaches are that they do not require channel length information, need no phase unwrapping, and unlike the majority of existing methods, need no pre-whitening of the system outputs.While several methods have been proposed to blindly identify over-determined convolutive MIMO systems, very scarce results exist for under-determined (No < Ni) case, all of which refer to systems that either have some special structure, or special No, Ni values. We propose a novel approach for blind identi¯cation of under-determined convolutive MIMO systems of general dimensions. As long as min(No;Ni) ¸ 2, we can always ¯nd the appropriate order of statistics that guarantees identi¯ability of the system response within trivial ambiguities. We provide the description of the class of identi¯able MIMO systems for a certain order of statistics K, and an algorithm to reach the solution.Finally we propose a novel approach for blind identi¯cation and symbol recovery of a distributed antenna system with multiple carrier-frequency o®sets (CFO), arising due to mismatch between the oscillators of transmitters and receivers. The received base-band signal is over-sampled, and its polyphase components are used to formulate a virtual MIMO problem. By applying blind MIMO system estimation techniques, the system response is estimated and used to subsequently decouple the users and transform the multiple CFOs estimation problem into a set of independent single CFO estimation problems.Ph.D., Electrical Engineering -- Drexel University, 200
    corecore