320 research outputs found

    Non-blind watermarking of network flows

    Full text link
    Linking network flows is an important problem in intrusion detection as well as anonymity. Passive traffic analysis can link flows but requires long periods of observation to reduce errors. Active traffic analysis, also known as flow watermarking, allows for better precision and is more scalable. Previous flow watermarks introduce significant delays to the traffic flow as a side effect of using a blind detection scheme; this enables attacks that detect and remove the watermark, while at the same time slowing down legitimate traffic. We propose the first non-blind approach for flow watermarking, called RAINBOW, that improves watermark invisibility by inserting delays hundreds of times smaller than previous blind watermarks, hence reduces the watermark interference on network flows. We derive and analyze the optimum detectors for RAINBOW as well as the passive traffic analysis under different traffic models by using hypothesis testing. Comparing the detection performance of RAINBOW and the passive approach we observe that both RAINBOW and passive traffic analysis perform similarly good in the case of uncorrelated traffic, however, the RAINBOW detector drastically outperforms the optimum passive detector in the case of correlated network flows. This justifies the use of non-blind watermarks over passive traffic analysis even though both approaches have similar scalability constraints. We confirm our analysis by simulating the detectors and testing them against large traces of real network flows

    Lime: Data Lineage in the Malicious Environment

    Full text link
    Intentional or unintentional leakage of confidential data is undoubtedly one of the most severe security threats that organizations face in the digital era. The threat now extends to our personal lives: a plethora of personal information is available to social networks and smartphone providers and is indirectly transferred to untrustworthy third party and fourth party applications. In this work, we present a generic data lineage framework LIME for data flow across multiple entities that take two characteristic, principal roles (i.e., owner and consumer). We define the exact security guarantees required by such a data lineage mechanism toward identification of a guilty entity, and identify the simplifying non repudiation and honesty assumptions. We then develop and analyze a novel accountable data transfer protocol between two entities within a malicious environment by building upon oblivious transfer, robust watermarking, and signature primitives. Finally, we perform an experimental evaluation to demonstrate the practicality of our protocol

    DeepMarks: A Digital Fingerprinting Framework for Deep Neural Networks

    Get PDF
    This paper proposes DeepMarks, a novel end-to-end framework for systematic fingerprinting in the context of Deep Learning (DL). Remarkable progress has been made in the area of deep learning. Sharing the trained DL models has become a trend that is ubiquitous in various fields ranging from biomedical diagnosis to stock prediction. As the availability and popularity of pre-trained models are increasing, it is critical to protect the Intellectual Property (IP) of the model owner. DeepMarks introduces the first fingerprinting methodology that enables the model owner to embed unique fingerprints within the parameters (weights) of her model and later identify undesired usages of her distributed models. The proposed framework embeds the fingerprints in the Probability Density Function (pdf) of trainable weights by leveraging the extra capacity available in contemporary DL models. DeepMarks is robust against fingerprints collusion as well as network transformation attacks, including model compression and model fine-tuning. Extensive proof-of-concept evaluations on MNIST and CIFAR10 datasets, as well as a wide variety of deep neural networks architectures such as Wide Residual Networks (WRNs) and Convolutional Neural Networks (CNNs), corroborate the effectiveness and robustness of DeepMarks framework

    Securing Audio Watermarking System using Discrete Fourier Transform for Copyright Protection

    Get PDF
    The recent growth in pc networks, and a lot of specifically, the planet Wide internet, copyright protection of digital audio becomes a lot of and a lot of necessary. Digital audio watermarking has drawn in depth attention for copyright protection of audio information. A digital audio watermarking may be a method of embedding watermarks into audio signal to point out genuineness and possession. Our technique supported the embedding watermark into audio signal and extraction of watermark sequence. We tend to propose a brand new watermarking system victimization separate Fourier remodel (DFT) for audio copyright protection. The watermarks area unit embedded into the best outstanding peak of the magnitude spectrum of every non-overlapping frame. This watermarking system can provides robust lustiness against many styles of attacks like noise addition, cropping, re-sampling, re-quantization, and MP3 compression and achieves similarity values starting from thirteen sound unit to twenty sound unit. Additionally, planned systems attempting to realize SNR (signal-to-noise ratio) values starting from twenty sound unit to twenty-eight sound unit. DOI: 10.17762/ijritcc2321-8169.15055

    Contextual biometric watermarking of fingerprint images

    Get PDF
    This research presents contextual digital watermarking techniques using face and demographic text data as multiple watermarks for protecting the evidentiary integrity of fingerprint image. The proposed techniques embed the watermarks into selected regions of fingerprint image in MDCT and DWT domains. A general image watermarking algorithm is developed to investigate the application of MDCT in the elimination of blocking artifacts. The application of MDCT has improved the performance of the watermarking technique compared to DCT. Experimental results show that modifications to fingerprint image are visually imperceptible and maintain the minutiae detail. The integrity of the fingerprint image is verified through high matching score obtained from the AFIS system. There is also a high degree of correlation between the embedded and extracted watermarks. The degree of similarity is computed using pixel-based metrics and human visual system metrics. It is useful for personal identification and establishing digital chain of custody. The results also show that the proposed watermarking technique is resilient to common image modifications that occur during electronic fingerprint transmission
    • …
    corecore