3 research outputs found

    STR-839: ADDRESSING THE ISSUES OF MODAL IDENTIFICATION USING TENSOR DECOMPOSITION

    Get PDF
    Modal identification has been an indispensable tool for condition assessment of critical civil infrastructure. Recently several signal processing techniques including time-frequency analysis have shown significant success in addressing wide range of challenges in modal identification of flexible structures. In a parallel development, tensor decomposition is explored as an attractive and versatile system identification tool that can use even a limited number of vibration sensors to estimate the modal parameters under ambient excitations. In this paper, the performance of tensor decomposition is evaluated for modal identification of a building model under a multitude of earthquake excitations

    Temperature-Driven Anomaly Detection Methods for Structural Health Monitoring

    Get PDF
    Reported in this thesis is a data-driven anomaly detection method for structural health monitoring which is based on the utilization of temperature-induced variations. Structural anomaly detection should be able to identify meaningful changes in measurements which are due to structural abnormal behaviour. Because, the temperature-induced variations and structural abnormalities may produce significant misinterpretations, the development of solutions to identify a structural anomaly, accounting for temperature influence, from measurements, is a critical procedure to support structural maintenance. A temperature-driven anomaly detection method is proposed, that introduces the idea of blind source separation for extracting thermal response and for further anomaly detection. Two thermal feature extraction methods are employed corresponding to the classification of underdetermined and overdetermined methods. The underdetermined method has the three phases of: (a) mode decomposition by utilising Empirical Mode Decomposition or Ensemble Empirical Mode Decomposition; (b) data reduction by performing Principal Component Analysis (PCA); (c) blind separation by applying Independent Component Analysis (ICA). The overdetermined method has the two stages of the pre-indication according to PCA and the blind separation by the devotion of ICA. Based on the extracted thermal response, the temperature-driven anomaly detection method is later developed in combination with the four methodologies of: Moving Principal Component Analysis (MPCA); Robust Regression Analysis (RRA); One-Class Support Vector Machine (OCSVM); Artificial Neural Network (ANN). Therefore, the proposed temperature-driven anomaly detection methods are designed as Td-MPCA, Td-RRA, Td-OCSVM, and Td-ANN. The proposed thermal feature extraction methods and temperature-driven anomaly detection methods have been investigated in the context of three case studies. The first case is a numerical truss bridge with simulated material stiffness reduction to create levels of damage. The second case is a purpose constructed truss bridge in the Structures Lab at the University of Warwick. The third case study is Ricciolo curved viaduct in Switzerland. Two primary findings can be confirmed from the evaluation results of these three case studies. Firstly, temperature-induced variations can conceal damage information in measurements. Secondly, the detection abilities of temperature-driven methods, which are Td-MPCA, Td-RRA, Td-OCSVM, and Td-ANN, for disclosing slight anomalies in time are more efficient when compared with the current anomaly detection method, which are MPCA, RRA, OCSVM, and ANN. The unique features of the author’s proposed temperature-driven anomaly detection method can be highlighted as follows: (a) it is a data-driven method for extracting features from an unknown structural system. In another word, the prior knowledge of the structural in-service conditions and physical models are not necessary; (b) it is the first time that blind source separation approaches and relative algorithms have been successfully employed for extracting temperature-induced responses; (c) it is a new approach to reliably assess the capability of using temperature-induced responses for anomaly detection

    Blind identification of possibly under-determined convolutive MIMO systems

    Get PDF
    Blind identi¯cation of a Linear Time Invariant (LTI) Multiple-Input Multiple-Output (MIMO) system is of great importance in many applications, such as speech processing, multi-access communication, multi-sensor sonar/radar systems, and biomedical applications. The objective of blind identi¯cation for a MIMO system is to identify an unknown system, driven by Ni unobservable inputs, based on the No system outputs. We ¯rst present a novel blind approach for the identi¯cation of a over-determined (No ¸ Ni) MIMO system driven by white, mutually independent unobservable inputs. Samples of the system frequency response are obtained based on Parallel Factorization (PARAFAC) of three- or four-way tensors constructed respectively based on third- or fourth-order cross-spectra of the system outputs. We show that the information available in the higher-order spectra allows for the system response to be identi¯ed up to a constant scaling and permutation ambiguities and a linear phase ambiguity. Important features of the proposed approaches are that they do not require channel length information, need no phase unwrapping, and unlike the majority of existing methods, need no pre-whitening of the system outputs.While several methods have been proposed to blindly identify over-determined convolutive MIMO systems, very scarce results exist for under-determined (No < Ni) case, all of which refer to systems that either have some special structure, or special No, Ni values. We propose a novel approach for blind identi¯cation of under-determined convolutive MIMO systems of general dimensions. As long as min(No;Ni) ¸ 2, we can always ¯nd the appropriate order of statistics that guarantees identi¯ability of the system response within trivial ambiguities. We provide the description of the class of identi¯able MIMO systems for a certain order of statistics K, and an algorithm to reach the solution.Finally we propose a novel approach for blind identi¯cation and symbol recovery of a distributed antenna system with multiple carrier-frequency o®sets (CFO), arising due to mismatch between the oscillators of transmitters and receivers. The received base-band signal is over-sampled, and its polyphase components are used to formulate a virtual MIMO problem. By applying blind MIMO system estimation techniques, the system response is estimated and used to subsequently decouple the users and transform the multiple CFOs estimation problem into a set of independent single CFO estimation problems.Ph.D., Electrical Engineering -- Drexel University, 200
    corecore