19,370 research outputs found

    AMENDED ADAPTIVE ALGORITHM FOR CORPUS BASED IMPROVED SPEECH ENHANCEMENT

    Get PDF
    Speech enhancement objective is to improve the noisy speech signals for human perception. The intention of speech enhancement algorithm is to improve the performance of the communication, when the signal is occluded by noise. The quality and intelligibility of speech is reduced because of the presence of background noise. There are various adaptive filtering algorithms for speech enhancement. The existing least mean square and normalised least mean square algorithms have the problem of choosing the step size that guarantees the stability of the algorithm. To overcome this problem, we focus on speech enhancement by amended adaptive filtering. The proposed algorithm follows blind source separation strategy using adaptive filtering. Comparison of existing adaptive filtering algorithms with proposed algorithm justifies the amendment incorporated in this paper. Taking the objective criteria into account the algorithms has been tested for segmental signal to noise ratio (SegSNR), segmental mean square error (SegMSE), signal to noise ratio and mean square error. The proposed algorithm can be used for hand-free cell phone, hearing aids and teleconferencing systems

    AMENDED ADAPTIVE ALGORITHM FOR CORPUS BASED IMPROVED SPEECH ENHANCEMENT

    Get PDF
    Speech enhancement objective is to improve the noisy speech signals for human perception. The intention of speech enhancement algorithm is to improve the performance of the communication, when the signal is occluded by noise. The quality and intelligibility of speech is reduced because of the presence of background noise. There are various adaptive filtering algorithms for speech enhancement. The existing least mean square and normalised least mean square algorithms have the problem of choosing the step size that guarantees the stability of the algorithm. To overcome this problem, we focus on speech enhancement by amended adaptive filtering. The proposed algorithm follows blind source separation strategy using adaptive filtering. Comparison of existing adaptive filtering algorithms with proposed algorithm justifies the amendment incorporated in this paper. Taking the objective criteria into account the algorithms has been tested for segmental signal to noise ratio (SegSNR), segmental mean square error (SegMSE), signal to noise ratio and mean square error. The proposed algorithm can be used for hand-free cell phone, hearing aids and teleconferencing systems

    Speech Separation Using Partially Asynchronous Microphone Arrays Without Resampling

    Full text link
    We consider the problem of separating speech sources captured by multiple spatially separated devices, each of which has multiple microphones and samples its signals at a slightly different rate. Most asynchronous array processing methods rely on sample rate offset estimation and resampling, but these offsets can be difficult to estimate if the sources or microphones are moving. We propose a source separation method that does not require offset estimation or signal resampling. Instead, we divide the distributed array into several synchronous subarrays. All arrays are used jointly to estimate the time-varying signal statistics, and those statistics are used to design separate time-varying spatial filters in each array. We demonstrate the method for speech mixtures recorded on both stationary and moving microphone arrays.Comment: To appear at the International Workshop on Acoustic Signal Enhancement (IWAENC 2018
    • …
    corecore