4 research outputs found

    TTL-IQA: transitive transfer learning based no-reference image quality assessment

    Get PDF
    Image quality assessment (IQA) based on deep learning faces the overfitting problem due to limited training samples available in existing IQA databases. Transfer learning is a plausible solution to the problem, in which the shared features derived from the large-scale Imagenet source domain could be transferred from the original recognition task to the intended IQA task. However, the Imagenet source domain and the IQA target domain as well as their corresponding tasks are not directly related. In this paper, we propose a new transitive transfer learning method for no-reference image quality assessment (TTL-IQA). First, the architecture of the multi-domain transitive transfer learning for IQA is developed to transfer the Imagenet source domain to the auxiliary domain, and then to the IQA target domain. Second, the auxiliary domain and the auxiliary task are constructed by a new generative adversarial network based on distortion translation (DT-GAN). Furthermore, a TTL network of the semantic features transfer (SFTnet) is proposed to optimize the shared features for the TTL-IQA. Experiments are conducted to evaluate the performance of the proposed method on various IQA databases, including the LIVE, TID2013, CSIQ, LIVE multiply distorted and LIVE challenge. The results show that the proposed method significantly outperforms the state-of-the-art methods. In addition, our proposed method demonstrates a strong generalization ability

    A survey of DNN methods for blind image quality assessment

    Get PDF
    Blind image quality assessment (BIQA) methods aim to predict quality of images as perceived by humans without access to a reference image. Recently, deep learning methods have gained substantial attention in the research community and have proven useful for BIQA. Although previous study of deep neural networks (DNN) methods is presented, some novelty DNN methods, which are recently proposed, are not summarized for BIQA. In this paper, we provide a survey covering various DNN methods for BIQA. First, we systematically analyze the existing DNN-based quality assessment methods according to the role of DNN. Then, we compare the prediction performance of various DNN methods on the synthetic databases (LIVE, TID2013, CSIQ, LIVE multiply distorted) and authentic databases (LIVE challenge), providing important information that can help understand the underlying properties between different DNN methods for BIQA. Finally, we describe some emerging challenges in designing and training DNN-based BIQA, along with few directions that are worth further investigations in the future

    Blind Image Quality Assessment of Natural Scenes Based on Entropy Differences in the DCT Domain

    No full text
    Blind/no-reference image quality assessment is performed to accurately evaluate the perceptual quality of a distorted image without prior information from a reference image. In this paper, an effective blind image quality assessment approach based on entropy differences in the discrete cosine transform domain for natural images is proposed. Information entropy is an effective measure of the amount of information in an image. We find the discrete cosine transform coefficient distribution of distorted natural images shows a pulse-shape phenomenon, which directly affects the differences of entropy. Then, a Weibull model is used to fit the distributions of natural and distorted images. This is because the Weibull model sufficiently approximates the pulse-shape phenomenon as well as the sharp-peak and heavy-tail phenomena of natural scene statistics rules. Four features that are related to entropy differences and human visual system are extracted from the Weibull model for three scaling images. Image quality is assessed by the support vector regression method based on the extracted features. This blind Weibull statistics algorithm is thoroughly evaluated using three widely used databases: LIVE, TID2008, and CSIQ. The experimental results show that the performance of the proposed blind Weibull statistics method is highly consistent with that of human visual perception and greater than that of the state-of-the-art blind and full-reference image quality assessment methods in most cases

    Entropy in Image Analysis II

    Get PDF
    Image analysis is a fundamental task for any application where extracting information from images is required. The analysis requires highly sophisticated numerical and analytical methods, particularly for those applications in medicine, security, and other fields where the results of the processing consist of data of vital importance. This fact is evident from all the articles composing the Special Issue "Entropy in Image Analysis II", in which the authors used widely tested methods to verify their results. In the process of reading the present volume, the reader will appreciate the richness of their methods and applications, in particular for medical imaging and image security, and a remarkable cross-fertilization among the proposed research areas
    corecore