4 research outputs found

    Asymptotically Optimal Blind Calibration of Uniform Linear Sensor Arrays for Narrowband Gaussian Signals

    Full text link
    An asymptotically optimal blind calibration scheme of uniform linear arrays for narrowband Gaussian signals is proposed. Rather than taking the direct Maximum Likelihood (ML) approach for joint estimation of all the unknown model parameters, which leads to a multi-dimensional optimization problem with no closed-form solution, we revisit Paulraj and Kailath's (P-K's) classical approach in exploiting the special (Toeplitz) structure of the observations' covariance. However, we offer a substantial improvement over P-K's ordinary Least Squares (LS) estimates by using asymptotic approximations in order to obtain simple, non-iterative, (quasi-)linear Optimally-Weighted LS (OWLS) estimates of the sensors gains and phases offsets with asymptotically optimal weighting, based only on the empirical covariance matrix of the measurements. Moreover, we prove that our resulting estimates are also asymptotically optimal w.r.t. the raw data, and can therefore be deemed equivalent to the ML Estimates (MLE), which are otherwise obtained by joint ML estimation of all the unknown model parameters. After deriving computationally convenient expressions of the respective Cram\'er-Rao lower bounds, we also show that our estimates offer improved performance when applied to non-Gaussian signals (and/or noise) as quasi-MLE in a similar setting. The optimal performance of our estimates is demonstrated in simulation experiments, with a considerable improvement (reaching an order of magnitude and more) in the resulting mean squared errors w.r.t. P-K's ordinary LS estimates. We also demonstrate the improved accuracy in a multiple-sources directions-of-arrivals estimation task.Comment: in IEEE Transactions on Signal Processin

    Sparse Array Signal Processing

    Get PDF
    This dissertation details three approaches for direction-of-arrival (DOA) estimation or beamforming in array signal processing from the perspective of sparsity. In the first part of this dissertation, we consider sparse array beamformer design based on the alternating direction method of multipliers (ADMM); in the second part of this dissertation, the problem of joint DOA estimation and distorted sensor detection is investigated; and off-grid DOA estimation is studied in the last part of this dissertation. In the first part of this thesis, we devise a sparse array design algorithm for adaptive beamforming. Our strategy is based on finding a sparse beamformer weight to maximize the output signal-to-interference-plus-noise ratio (SINR). The proposed method utilizes ADMM, and admits closed-form solutions at each ADMM iteration. The algorithm convergence properties are analyzed by showing the monotonicity and boundedness of the augmented Lagrangian function. In addition, we prove that the proposed algorithm converges to the set of Karush-Kuhn-Tucker stationary points. Numerical results exhibit its excellent performance, which is comparable to that of the exhaustive search approach, slightly better than those of the state-of-the-art solvers, and significantly outperforms several other sparse array design strategies, in terms of output SINR. Moreover, the proposed ADMM algorithm outperforms its competitors, in terms of computational cost. Distorted sensors could occur randomly and may lead to the breakdown of a sensor array system. In the second part of this thesis, we consider an array model in which a small number of sensors are distorted by unknown sensor gain and phase errors. With such an array model, the problem of joint DOA estimation and distorted sensor detection is formulated under the framework of low-rank and row-sparse decomposition. We derive an iteratively reweighted least squares (IRLS) algorithm to solve the resulting problem. The convergence property of the IRLS algorithm is analyzed by means of the monotonicity and boundedness of the objective function. Extensive simulations are conducted in view of parameter selection, convergence speed, computational complexity, and performance of DOA estimation as well as distorted sensor detection. Even though the IRLS algorithm is slightly worse than the ADMM in detecting the distorted sensors, the results show that our approach outperforms several state-of-the-art techniques in terms of convergence speed, computational cost, and DOA estimation performance. In the last part of this thesis, the problem of off-grid DOA estimation is investigated. We develop a method to jointly estimate the closest spatial frequency (the sine of DOA) grids, and the gaps between the estimated grids and the corresponding frequencies. By using a second-order Taylor approximation, the data model under the framework of joint-sparse representation is formulated. We point out an important property of the signals of interest in the model, namely the proportionality relationship. The proportionality relationship is empirically demonstrated to be useful in the sense that it increases the probability of the mixing matrix satisfying the block restricted isometry property. Simulation examples demonstrate the effectiveness and superiority of the proposed method against several state-of-the-art grid-based approaches

    Blind Calibration for Acoustic Vector Sensor Arrays

    No full text
    In this paper, we present a calibration algorithm for acoustic vector sensors arranged in a uniform linear array configuration. To do so, we do not use a calibrator source, instead we leverage the Toeplitz blocks present in the data covariance matrix. We develop linear estimators for estimating sensor gains and phases. Further, we discuss the differences of the presented blind calibration approach for acoustic vector sensor arrays in comparison with the approach for acoustic pressure sensor arrays. In order to validate the proposed blind calibration algorithm, simulation results for direction-of-arrival (DOA) estimation with an uncalibrated and calibrated uniform linear array based on minimum variance distortion less response and multiple signal classification algorithms are presented. The calibration performance is analyzed using the Cramér-Rao lower bound of the DOA estimates.</p

    Blind Calibration for Acoustic Vector Sensor Arrays

    No full text
    In this paper, we present a calibration algorithm for acoustic vector sensors arranged in a uniform linear array configuration. To do so, we do not use a calibrator source, instead we leverage the Toeplitz blocks present in the data covariance matrix. We develop linear estimators for estimating sensor gains and phases. Further, we discuss the differences of the presented blind calibration approach for acoustic vector sensor arrays in comparison with the approach for acoustic pressure sensor arrays. In order to validate the proposed blind calibration algorithm, simulation results for direction-of-arrival (DOA) estimation with an uncalibrated and calibrated uniform linear array based on minimum variance distortion less response and multiple signal classification algorithms are presented. The calibration performance is analyzed using the Cramér-Rao lower bound of the DOA estimates.Green Open Access added to TU Delft Institutional Repository ‘You share, we take care!’ – Taverne project https://www.openaccess.nl/en/you-share-we-take-care Otherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public.Circuits and System
    corecore