144 research outputs found

    Relevance of polynomial matrix decompositions to broadband blind signal separation

    Get PDF
    The polynomial matrix EVD (PEVD) is an extension of the conventional eigenvalue decomposition (EVD) to polynomial matrices. The purpose of this article is to provide a review of the theoretical foundations of the PEVD and to highlight practical applications in the area of broadband blind source separation (BSS). Based on basic definitions of polynomial matrix terminology such as parahermitian and paraunitary matrices, strong decorrelation and spectral majorization, the PEVD and its theoretical foundations will be briefly outlined. The paper then focuses on the applicability of the PEVD and broadband subspace techniques — enabled by the diagonalization and spectral majorization capabilities of PEVD algorithms—to define broadband BSS solutions that generalise well-known narrowband techniques based on the EVD. This is achieved through the analysis of new results from three exemplar broadband BSS applications — underwater acoustics, radar clutter suppression, and domain-weighted broadband beamforming — and their comparison with classical broadband methods

    Signals and Images in Sea Technologies

    Get PDF
    Life below water is the 14th Sustainable Development Goal (SDG) envisaged by the United Nations and is aimed at conserving and sustainably using the oceans, seas, and marine resources for sustainable development. It is not difficult to argue that signals and image technologies may play an essential role in achieving the foreseen targets linked to SDG 14. Besides increasing the general knowledge of ocean health by means of data analysis, methodologies based on signal and image processing can be helpful in environmental monitoring, in protecting and restoring ecosystems, in finding new sensor technologies for green routing and eco-friendly ships, in providing tools for implementing best practices for sustainable fishing, as well as in defining frameworks and intelligent systems for enforcing sea law and making the sea a safer and more secure place. Imaging is also a key element for the exploration of the underwater world for various scopes, ranging from the predictive maintenance of sub-sea pipelines and other infrastructure projects, to the discovery, documentation, and protection of sunken cultural heritage. The scope of this Special Issue encompasses investigations into techniques and ICT approaches and, in particular, the study and application of signal- and image-based methods and, in turn, exploration of the advantages of their application in the previously mentioned areas

    Localization, Mapping and SLAM in Marine and Underwater Environments

    Get PDF
    The use of robots in marine and underwater applications is growing rapidly. These applications share the common requirement of modeling the environment and estimating the robots’ pose. Although there are several mapping, SLAM, target detection and localization methods, marine and underwater environments have several challenging characteristics, such as poor visibility, water currents, communication issues, sonar inaccuracies or unstructured environments, that have to be considered. The purpose of this Special Issue is to present the current research trends in the topics of underwater localization, mapping, SLAM, and target detection and localization. To this end, we have collected seven articles from leading researchers in the field, and present the different approaches and methods currently being investigated to improve the performance of underwater robots

    Sensor array signal processing : two decades later

    Get PDF
    Caption title.Includes bibliographical references (p. 55-65).Supported by Army Research Office. DAAL03-92-G-115 Supported by the Air Force Office of Scientific Research. F49620-92-J-2002 Supported by the National Science Foundation. MIP-9015281 Supported by the ONR. N00014-91-J-1967 Supported by the AFOSR. F49620-93-1-0102Hamid Krim, Mats Viberg

    Source Separation for Hearing Aid Applications

    Get PDF

    Development of an acoustic communication link for micro underwater vehicles

    Get PDF
    PhD ThesisIn recent years there has been an increasing trend towards the use of Micro Remotely Operated Vehicles (μROVs), such as the Videoray and Seabotix LBV products, for a range of subsea applications, including environmental monitoring, harbour security, military surveillance and offshore inspection. A major operational limitation is the umbilical cable, which is traditionally used to supply power and communications to the vehicle. This tether has often been found to significantly restrict the agility of the vehicle or in extreme cases, result in entanglement with subsea structures. This thesis addresses the challenges associated with developing a reliable full-duplex wireless communications link aimed at tetherless operation of a μROV. Previous research has demonstrated the ability to support highly compressed video transmissions over several kilometres through shallow water channels with large range-depth ratios. However, the physical constraints of these platforms paired with the system cost requirements pose significant additional challenges. Firstly, the physical size/weight of transducers for the LF (8-16kHz) and MF (16-32kHz) bands would significantly affect the dynamics of the vehicle measuring less than 0.5m long. Therefore, this thesis explores the challenges associated with moving the operating frequency up to around 50kHz centre, along with the opportunities for increased data rate and tracking due to higher bandwidth. The typical operating radius of μROVs is less than 200m, in water < 100m deep, which gives rise to multipath channels characterised by long timespread and relatively sparse arrivals. Hence, the system must be optimised for performance in these conditions. The hardware costs of large multi-element receiver arrays are prohibitive when compared to the cost of the μROV platform. Additionally, the physical size of such arrays complicates deployment from small surface vessels. Although some recent developments in iterative equalisation and decoding structures have enhanced the performance of single element receivers, they are not found to be adequate in such channels. This work explores the optimum cost/performance trade-off in a combination of a micro beamforming array using a Bit Interleaved Coded Modulation with Iterative Decoding (BICM-ID) receiver structure. The highly dynamic nature of μROVs, with rapid acceleration/deceleration and complex thruster/wake effects, are also a significant challenge to reliable continuous communications. The thesis also explores how these effects can best be mitigated via advanced Doppler correction techniques, and adaptive coding and modulation via a simultaneous frequency multiplexed down link. In order to fully explore continuous adaptation of the transmitted signals, a real-time full-duplex communication system was constructed in hardware, utilising low cost components and a highly optimised PC based receiver structure. Rigorous testing, both in laboratory conditions and through extensive field trials, have enabled the author to explore the performance of the communication link on a vehicle carrying out typical operations and presenting a wide range of channel, noise, Doppler and transmission latency conditions. This has led to a comprehensive set of design recommendations for a reliable and cost effective link capable of continuous throughputs of >30 kbits/s

    Sensor Array Processing with Manifold Uncertainty

    Get PDF
    <p>The spatial spectrum, also known as a field directionality map, is a description of the spatial distribution of energy in a wavefield. By sampling the wavefield at discrete locations in space, an estimate of the spatial spectrum can be derived using basic wave propagation models. The observable data space corresponding to physically realizable source locations for a given array configuration is referred to as the array manifold. In this thesis, array manifold ambiguities for linear arrays of omni-directional sensors in non-dispersive fields are considered. </p><p>First, the problem of underwater a hydrophone array towed behind a maneuvering platform is considered. The array consists of many hydrophones mounted to a flexible cable that is pulled behind a ship. The towed cable will bend or distort as the ship performs maneuvers. The motion of the cable through the turn can be used to resolve ambiguities that are inherent to nominally linear arrays. The first significant contribution is a method to estimate the spatial spectrum using a time-varying array shape in a dynamic field and broadband temporal data. Knowledge of the temporal spectral shape is shown to enhance detection performance. The field is approximated as a sum of uncorrelated planewaves located at uniform locations in angle, forming a gridded map on which a maximum likelihood estimate for broadband source power is derived. Uniform linear arrays also suffer from spatial aliasing when the inter-element spacing exceeds a half-wavelength. Broadband temporal knowledge is shown to significantly reduce aliasing and thus, in simulation, enhance target detection in interference dominated environments. </p><p>As an extension, the problem of towed array shape estimation is considered when the number and location of sources are unknown. A maximum likelihood estimate of the array shape using the field directionality map is derived. An acoustic-based array shape estimate that exploits the full 360∘^\circ field via field directionality mapping is the second significant contribution. Towed hydrophone arrays have heading sensors in order to estimate array shape, but these sensors can malfunction during sharp turns. An array shape model is described that allows the heading sensor data to be statistically fused with heading sensor. The third significant contribution is method to exploit dynamical motion models for sharp turns for a robust array shape estimate that combines acoustic and heading data. The proposed array shape model works well for both acoustic and heading data and is valid for arbitrary continuous array shapes.</p><p>Finally, the problem of array manifold ambiguities for static under-sampled linear arrays is considered. Under-sampled arrays are non-uniformly sampled with average spacing greater than a half-wavelength. While spatial aliasing only occurs in uniformly sampled arrays with spacing greater than a half-wavelength, under-sampled arrays have increased spatial resolution at the cost of high sidelobes compared to half-wavelength sampled arrays with the same number of sensors. Additionally, non-uniformly sampled arrays suffer from rank deficient array manifolds that cause traditional subspace based techniques to fail. A class of fully agumentable arrays, minimally redundant linear arrays, is considered where the received data statistics of a uniformly spaced array of the same length can be reconstructed in wide sense stationary fields at the cost of increased variance. The forth significant contribution is a reduced rank processing method for fully augmentable arrays to reduce the variance from augmentation with limited snapshots. Array gain for reduced rank adaptive processing with diagonal loading for snapshot deficient scenarios is analytically derived using asymptotic results from random matrix theory for a set ratio of sensors to snapshots. Additionally, the problem of near-field sources is considered and a method to reduce the variance from augmentation is proposed. In simulation, these methods result in significant average and median array gains with limited snapshots.</p>Dissertatio

    On the applicability of models for outdoor sound (A)

    Get PDF

    Convolutive Blind Source Separation Methods

    Get PDF
    In this chapter, we provide an overview of existing algorithms for blind source separation of convolutive audio mixtures. We provide a taxonomy, wherein many of the existing algorithms can be organized, and we present published results from those algorithms that have been applied to real-world audio separation tasks
    • …
    corecore