16,165 research outputs found

    Clustering composite SaaS components in Cloud computing using a Grouping Genetic Algorithm

    Get PDF
    Recently, Software as a Service (SaaS) in Cloud computing, has become more and more significant among software users and providers. To offer a SaaS with flexible functions at a low cost, SaaS providers have focused on the decomposition of the SaaS functionalities, or known as composite SaaS. This approach has introduced new challenges in SaaS resource management in data centres. One of the challenges is managing the resources allocated to the composite SaaS. Due to the dynamic environment of a Cloud data centre, resources that have been initially allocated to SaaS components may be overloaded or wasted. As such, reconfiguration for the components’ placement is triggered to maintain the performance of the composite SaaS. However, existing approaches often ignore the communication or dependencies between SaaS components in their implementation. In a composite SaaS, it is important to include these elements, as they will directly affect the performance of the SaaS. This paper will propose a Grouping Genetic Algorithm (GGA) for multiple composite SaaS application component clustering in Cloud computing that will address this gap. To the best of our knowledge, this is the first attempt to handle multiple composite SaaS reconfiguration placement in a dynamic Cloud environment. The experimental results demonstrate the feasibility and the scalability of the GGA

    Prediction-based virtual instance migration for balanced workload in the cloud datacenters

    Get PDF
    Datacenters in the cloud today provide virtualized resources of CPU, memory, disk, and networks so that millions of users can use the services at the same time in an efficient and scalable way. One of the major challenges in these datacenters is load balancing and shifting. As a huge number of requests are sent to a particular datacenter or a group of servers are asked to process more than their fair share, some of the servers are overloaded, slowed down, hot spots are created, and even hardware failures may occur. This unbalanced load in the end deteriorates the performance of the entire system easily. In this paper, we propose a load balancer that aims at alleviating hot spots and distributing the load from overloaded servers to underutilized servers. Our load balancer monitors the loads of the servers, detects indications of overloading, then migrates virtual instances from overloaded servers to target servers. We have implemented the load balancer in a real system using the Xen hypervisor. We have also conducted an event-driven simulation to evaluate the performance of our system on a large-scale. Our results indicate that our reactive-predictive load balancing algorithm helps balance load among servers in the cloud as much as the best-case scenario from the exhaustive search with much less overhead

    SDN-based virtual machine management for cloud data centers

    Get PDF
    Software-Defined Networking (SDN) is an emerging paradigm to logically centralize the network control plane and automate the configuration of individual network elements. At the same time, in Cloud Data Centers (DCs), even though network and server resources converge over the same infrastructure and typically over a single administrative entity, disjoint control mechanisms are used for their respective management. In this paper, we propose a unified server-network control mechanism for converged ICT environments. We present a SDN-based orchestration framework for live Virtual Machine (VM) management where server hypervisors exploit temporal network information to migrate VMs and minimize the network-wide communication cost of the resulting traffic dynamics. A prototype implementation is presented and Mininet is used to evaluate the impact of diverse orchestration algorithms

    A Survey of Virtual Machine Placement Techniques and VM Selection Policies in Cloud Datacenter

    Get PDF
    The large scale virtualized data centers have been established due to the requirement of rapid growth in computational power driven by cloud computing model . The high energy consumption of such data centers is becoming more and more serious problem .In order to reduce the energy consumption, server consolidation techniques are used .But aggressive consolidation of VMs can lead to performance degradation. Hence another problem arise that is, the Service Level Agreement(SLA) violation. The optimized consolidation is achieved through optimized VM placement and VM selection policies . A comparative study of virtual machine placement and VM selection policies are presented in this paper for improving the energy efficiency
    • …
    corecore