19,608 research outputs found

    Optimisation of Mobile Communication Networks - OMCO NET

    Get PDF
    The mini conference “Optimisation of Mobile Communication Networks” focuses on advanced methods for search and optimisation applied to wireless communication networks. It is sponsored by Research & Enterprise Fund Southampton Solent University. The conference strives to widen knowledge on advanced search methods capable of optimisation of wireless communications networks. The aim is to provide a forum for exchange of recent knowledge, new ideas and trends in this progressive and challenging area. The conference will popularise new successful approaches on resolving hard tasks such as minimisation of transmit power, cooperative and optimal routing

    A review paper: optimal test cases for regression testing using artificial intelligent techniques

    Get PDF
    The goal of the testing process is to find errors and defects in the software being developed so that they can be fixed and corrected before they are delivered to the customer. Regression testing is an essential quality testing technique during the maintenance phase of the program as it is performed to ensure the integrity of the program after modifications have been made. With the development of the software, the test suite becomes too large to be fully implemented within the given test cost in terms of budget and time. Therefore, the cost of regression testing using different techniques should be reduced, here we dealt many methods such as retest all technique, regression test selection technique (RTS) and test case prioritization technique (TCP). The efficiency of these techniques is evaluated through the use of many metrics such as average percentage of fault detected (APFD), average percentage block coverage (APBC) and average percentage decision coverage (APDC). In this paper we dealt with these different techniques used in test case selection and test case prioritization and the metrics used to evaluate their efficiency by using different techniques of artificial intelligent and describe the best of all

    Heteroscedastic Gaussian processes for uncertainty modeling in large-scale crowdsourced traffic data

    Full text link
    Accurately modeling traffic speeds is a fundamental part of efficient intelligent transportation systems. Nowadays, with the widespread deployment of GPS-enabled devices, it has become possible to crowdsource the collection of speed information to road users (e.g. through mobile applications or dedicated in-vehicle devices). Despite its rather wide spatial coverage, crowdsourced speed data also brings very important challenges, such as the highly variable measurement noise in the data due to a variety of driving behaviors and sample sizes. When not properly accounted for, this noise can severely compromise any application that relies on accurate traffic data. In this article, we propose the use of heteroscedastic Gaussian processes (HGP) to model the time-varying uncertainty in large-scale crowdsourced traffic data. Furthermore, we develop a HGP conditioned on sample size and traffic regime (SRC-HGP), which makes use of sample size information (probe vehicles per minute) as well as previous observed speeds, in order to more accurately model the uncertainty in observed speeds. Using 6 months of crowdsourced traffic data from Copenhagen, we empirically show that the proposed heteroscedastic models produce significantly better predictive distributions when compared to current state-of-the-art methods for both speed imputation and short-term forecasting tasks.Comment: 22 pages, Transportation Research Part C: Emerging Technologies (Elsevier
    • …
    corecore