2,333 research outputs found

    Undergraduate Catalog of Studies, 2023-2024

    Get PDF

    Domain-specific implementation of high-order Discontinuous Galerkin methods in spherical geometry

    Get PDF
    In recent years, domain-specific languages (DSLs) have achieved significant success in large-scale efforts to reimplement existing meteorological models in a performance portable manner. The dynamical cores of these models are based on finite difference and finite volume schemes, and existing DSLs are generally limited to supporting only these numerical methods. In the meantime, there have been numerous attempts to use high-order Discontinuous Galerkin (DG) methods for atmospheric dynamics, which are currently largely unsupported in main-stream DSLs. In order to link these developments, we present two domain-specific languages which extend the existing GridTools (GT) ecosystem to high-order DG discretization. The first is a C++-based DSL called G4GT, which, despite being no longer supported, gave us the impetus to implement extensions to the subsequent Python-based production DSL called GT4Py to support the operations needed for DG solvers. As a proof of concept, the shallow water equations in spherical geometry are implemented in both DSLs, thus providing a blueprint for the application of domain-specific languages to the development of global atmospheric models. We believe this is the first GPU-capable DSL implementation of DG in spherical geometry. The results demonstrate that a DSL designed for finite difference/volume methods can be successfully extended to implement a DG solver, while preserving the performance-portability of the DSL.ISSN:0010-4655ISSN:1879-294

    Graduate Catalog of Studies, 2023-2024

    Get PDF

    Undergraduate Catalog of Studies, 2023-2024

    Get PDF

    Symmetries of Riemann surfaces and magnetic monopoles

    Get PDF
    This thesis studies, broadly, the role of symmetry in elucidating structure. In particular, I investigate the role that automorphisms of algebraic curves play in three specific contexts; determining the orbits of theta characteristics, influencing the geometry of the highly-symmetric Bring’s curve, and in constructing magnetic monopole solutions. On theta characteristics, I show how to turn questions on the existence of invariant characteristics into questions of group cohomology, compute comprehensive tables of orbit decompositions for curves of genus 9 or less, and prove results on the existence of infinite families of curves with invariant characteristics. On Bring’s curve, I identify key points with geometric significance on the curve, completely determine the structure of the quotients by subgroups of automorphisms, finding new elliptic curves in the process, and identify the unique invariant theta characteristic on the curve. With respect to monopoles, I elucidate the role that the Hitchin conditions play in determining monopole spectral curves, the relation between these conditions and the automorphism group of the curve, and I develop the theory of computing Nahm data of symmetric monopoles. As such I classify all 3-monopoles whose Nahm data may be solved for in terms of elliptic functions

    Authentication enhancement in command and control networks: (a study in Vehicular Ad-Hoc Networks)

    Get PDF
    Intelligent transportation systems contribute to improved traffic safety by facilitating real time communication between vehicles. By using wireless channels for communication, vehicular networks are susceptible to a wide range of attacks, such as impersonation, modification, and replay. In this context, securing data exchange between intercommunicating terminals, e.g., vehicle-to-everything (V2X) communication, constitutes a technological challenge that needs to be addressed. Hence, message authentication is crucial to safeguard vehicular ad-hoc networks (VANETs) from malicious attacks. The current state-of-the-art for authentication in VANETs relies on conventional cryptographic primitives, introducing significant computation and communication overheads. In this challenging scenario, physical (PHY)-layer authentication has gained popularity, which involves leveraging the inherent characteristics of wireless channels and the hardware imperfections to discriminate between wireless devices. However, PHY-layerbased authentication cannot be an alternative to crypto-based methods as the initial legitimacy detection must be conducted using cryptographic methods to extract the communicating terminal secret features. Nevertheless, it can be a promising complementary solution for the reauthentication problem in VANETs, introducing what is known as “cross-layer authentication.” This thesis focuses on designing efficient cross-layer authentication schemes for VANETs, reducing the communication and computation overheads associated with transmitting and verifying a crypto-based signature for each transmission. The following provides an overview of the proposed methodologies employed in various contributions presented in this thesis. 1. The first cross-layer authentication scheme: A four-step process represents this approach: initial crypto-based authentication, shared key extraction, re-authentication via a PHY challenge-response algorithm, and adaptive adjustments based on channel conditions. Simulation results validate its efficacy, especially in low signal-to-noise ratio (SNR) scenarios while proving its resilience against active and passive attacks. 2. The second cross-layer authentication scheme: Leveraging the spatially and temporally correlated wireless channel features, this scheme extracts high entropy shared keys that can be used to create dynamic PHY-layer signatures for authentication. A 3-Dimensional (3D) scattering Doppler emulator is designed to investigate the scheme’s performance at different speeds of a moving vehicle and SNRs. Theoretical and hardware implementation analyses prove the scheme’s capability to support high detection probability for an acceptable false alarm value ≤ 0.1 at SNR ≥ 0 dB and speed ≤ 45 m/s. 3. The third proposal: Reconfigurable intelligent surfaces (RIS) integration for improved authentication: Focusing on enhancing PHY-layer re-authentication, this proposal explores integrating RIS technology to improve SNR directed at designated vehicles. Theoretical analysis and practical implementation of the proposed scheme are conducted using a 1-bit RIS, consisting of 64 × 64 reflective units. Experimental results show a significant improvement in the Pd, increasing from 0.82 to 0.96 at SNR = − 6 dB for multicarrier communications. 4. The fourth proposal: RIS-enhanced vehicular communication security: Tailored for challenging SNR in non-line-of-sight (NLoS) scenarios, this proposal optimises key extraction and defends against denial-of-service (DoS) attacks through selective signal strengthening. Hardware implementation studies prove its effectiveness, showcasing improved key extraction performance and resilience against potential threats. 5. The fifth cross-layer authentication scheme: Integrating PKI-based initial legitimacy detection and blockchain-based reconciliation techniques, this scheme ensures secure data exchange. Rigorous security analyses and performance evaluations using network simulators and computation metrics showcase its effectiveness, ensuring its resistance against common attacks and time efficiency in message verification. 6. The final proposal: Group key distribution: Employing smart contract-based blockchain technology alongside PKI-based authentication, this proposal distributes group session keys securely. Its lightweight symmetric key cryptography-based method maintains privacy in VANETs, validated via Ethereum’s main network (MainNet) and comprehensive computation and communication evaluations. The analysis shows that the proposed methods yield a noteworthy reduction, approximately ranging from 70% to 99%, in both computation and communication overheads, as compared to the conventional approaches. This reduction pertains to the verification and transmission of 1000 messages in total

    Graduate Catalog of Studies, 2023-2024

    Get PDF

    Explorations into Appendicular Ontogeny using a Cross-Sectional, Contemporary U.S. Sample

    Get PDF
    Investigations into the subadult skeleton have been restricted by sample availability in biological anthropology. Alternatively, the same source of longitudinal data has been repeatedly used, which does not reflect the variability of growth and development (i.e., ontogeny) or the United States (U.S.) population. Small and/or homogenous samples have often resulted in limited or inappropriate modeling choices to investigate the growth and development and variation of the subadult skeleton. Recent technological advancements have made virtual anthropology possible. The use of computed tomography (CT) scans has opened the doors to increasing sample sizes of minority groups and in turn increasing the variation of skeletal information. One repository, the Subadult Virtual Anthropology Database (SVAD), has focused on increasing and diversifying subadult skeletal data to increase the possibilities of subadult research in biological anthropology. The articles in this (non)dissertation collection use the SVAD (M=610, F=416) and the Forensic Anthropology Data Bank (FDB; M=285, F=161) to evaluate three different perspectives of appendicular (i.e., long bone) ontogeny: absolute, relative, and index. First, relative long bone lengths and nonlinear modeling are used as the first-ever evaluation of long bone growth through adult stabilization. Second, the brachial and crural indices are used to explore the chronological ontogenetic trajectories of each index and their ecogeographic patterns. Third, absolute long bone breadth and length measurements are used to create linear and nonlinear equations for estimating subadult stature for forensic application. In doing so, this is the first comprehensive collection of studies that explore three distinct perspectives of long bone ontogeny and variation from the same source of subadult skeletal data, demonstrating the need for additional contemporary subadult samples and novel modeling approaches

    LIPIcs, Volume 251, ITCS 2023, Complete Volume

    Get PDF
    LIPIcs, Volume 251, ITCS 2023, Complete Volum
    corecore