
Sparse approaches for the exact distribution of patterns

in long state sequences generated by a Markov source

Grégory Nuel, Jean-Guillaume Dumas

To cite this version:

Grégory Nuel, Jean-Guillaume Dumas. Sparse approaches for the exact distribution of patterns
in long state sequences generated by a Markov source. Theoretical Computer Science, Elsevier,
2013, 479, pp.22-42. <10.1016/j.tcs.2012.10.019>. <hal-00492738v4>

HAL Id: hal-00492738

https://hal.archives-ouvertes.fr/hal-00492738v4

Submitted on 5 Jun 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by HAL Descartes

https://core.ac.uk/display/52196072?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr
https://hal.archives-ouvertes.fr/hal-00492738v4

Sparse approaches for the exact distribution of

patterns in long state sequences generated by a

Markov source

Gregory Nuel∗ Jean-Guillaume Dumas†

Abstract

We present two novel approaches for the computation of the exact
distribution of a pattern in a long sequence. Both approaches take into
account the sparse structure of the problem and are two-part algorithms.
The first approach relies on a partial recursion after a fast computation of
the second largest eigenvalue of the transition matrix of a Markov chain
embedding. The second approach uses fast Taylor expansions of an exact
bivariate rational reconstruction of the distribution.

We illustrate the interest of both approaches on a simple toy-example
and two biological applications: the transcription factors of the Human
Chromosome 10 and the PROSITE signatures of functional motifs in pro-
teins. On these example our methods demonstrate their complementarity
and their ability to extend the domain of feasibility for exact computations
in pattern problems to a new level.

1 Introduction

The distribution of patterns in state random sequences generated by a Markov
source has many applications in a wide range of fields including (but not limited
to) reliability, insurance, communication systems, pattern matching, or bioinfor-
matics. In the latter field in particular, the detection of statistically exceptional
DNA or protein patterns (PROSITE signatures, CHI motifs, regulation pat-
terns, binding sites, etc.) have been very successful allowing both to confirm
known biological signals as well as new discoveries. Here follows a short selection
of such work: Karlin et al. [1992], van Helden et al. [1998], Brazma et al. [1998],
El Karoui et al. [1999], Beaudoing et al. [2000], Frith et al. [2002], Hampson
et al. [2002], Leonardo Mariño-Ramı́rez and Landsman [2004].

From the technical point of view, obtaining the distribution of a pattern
count in a state random sequence is a difficult problem which has drawn a

∗MAP5, UMR CNRS 8145, Department of Applied Mathematics, Paris Descartes Univer-
sity, France. Gregory.Nuel@ParisDescartes.fr
†Laboratoire Jean Kuntzmann, UMR CNRS 5224, Université de Grenoble, Grenoble,

France. Jean-Guillaume.Dumas@imag.fr

1

mailto:Gregory.Nuel@ParisDescartes.fr
mailto:Jean-Guillaume.Dumas@imag.fr

considerable interest from the probabilistic, combinatorics and computer science
community over the last fifty years. Many concurrent approaches have been
suggested, all of them having their own strengths and weaknesses, and we give
here only a short selection of the corresponding references [see Reignier, 2000,
Lothaire, 2005, Nuel, 2006b, for more comprehensive reviews].

Exact methods are based on a wide range of techniques like Markov chain
embedding, probability generating functions, combinatorial methods, or expo-
nential families Fu [1996], Stefanov and Pakes [1997], Antzoulakos [2001], Chang
[2005], Boeva et al. [2005], Nuel [2006a], Stefanov and Szpankowski [2007], Boeva
et al. [2007]. There is also a wide range of asymptotic approximations, the most
popular among them being: Gaussian approximations Pevzner et al. [1989],
Cowan [1991], Kleffe and Borodovski [1997], Prum et al. [1995], Poisson ap-
proximations Godbole [1991], Geske et al. [1995], Reinert and Schbath [1999],
Erhardsson [2000] and Large deviation approximations Denise et al. [2001], Nuel
[2004].

More recently, several authors [Nicodème et al., 2002, Crochemore and Ste-
fanov, 2003, Lladser, 2007, Nuel, 2008, Ribeca and Raineri, 2008] pointed out
the strong connection of the problem to the theory of pattern matching by pro-
viding the optimal Markov chain embedding of any pattern problem through
minimal Deterministic Finite state Automata (DFA). However, this approach
remains difficult to apply in practice when considering high complexity patterns
and/or long sequences.

In this paper, we want to address this problem by suggesting two efficient
ways to obtain the distribution of any pattern of interest in a (possibly long)
homogeneous state Markov sequence.

The paper is organized as follow. In the first part, we recall (in Section 2) the
principles of optimal Markov chain embedding through DFA, as well as the as-
sociated probability generating function (pgf) formulas. We then (in Section 3)
present a new algorithm using partial recursion formulas. The convergence
of these partial recursion formulas depends on a (fast) precomputation of the
second largest eigenvalue of the transition matrix of a Markov chain embed-
ding. The next part (Section 4) takes advantage of state-of-the-art results in
exact computation to suggest a very efficient way to obtain the bivariate pgf of
the problem through rational reconstruction. Once this involving precomputa-
tion has been performed, fast Taylor expansions, using the high-order liftings
of Storjohann [2003], can very quickly reveal the distribution of any pattern
count. We then (in Section 5) apply our new algorithms successively to a sim-
ple toy-example, a selection of DNA (Transcription Factors) patterns, and to
protein motifs (PROSITE signature). In all cases, the relative performance of
the two algorithms are presented and discussed, highlighting their strengths and
weaknesses. We conclude (in Section 6) with some perspectives of this work,
including a table that summarizes memory and time complexities.

2

2 DFA and optimal Markov chain embedding

2.1 Automata and languages

In this part we recall some classical definitions and results of the well known
theory of languages and automata [Hopcroft et al., 2001].

We consider A a finite alphabet whose elements are called letters. A word
(or sequence) over A is a sequence of letters and a language over A is a set of
words (finite or not). We denote by ε the empty word. For example ABBABA is
a word over the binary alphabet A = {A, B} and L = {AB, ABBABA, BBBBB} is a
(finite) language over A.

The product L1 · L2 (the dot could be omitted) of two languages is the lan-
guage {w1w2, w1 ∈ L1, w2 ∈ L2} where w1w2 is the concatenation – or product
– of w1 and w2. If L is a language, Ln = {w1 . . . wn with w1, . . . wn ∈ L}
and the star closure of L is defined by L∗ = ∪n>0Ln. The language A∗
is hence the set of all possible words over A. For example we have {AB} ·
{ABBABA, BBBBB} = {ABABBABA, ABBBBBB}; {AB}3 = {ABABAB} and {AB}∗ =
{ε, AB, ABAB, ABABAB, ABABABAB . . .}.

A regular language is either the empty word, or a single letter, or obtained by
a finite number of regular operations (namely: union, product and star closure).
A finite sequence of regular operations describing a regular language is called
a regular expression whose size is defined as its number of operations. A∗ is
regular. Any finite language is regular.

Definition 1. If A is a finite alphabet, Q is a finite set of states, σ ∈ Q is
a starting state, F ⊂ Q is a subset of final states and δ : Q × A → Q is
a transition function, then (A,Q, σ,F , δ) is a Deterministic Finite Automaton
(DFA). For all ad1 = a1 . . . ad−1ad ∈ Ad (d > 2) and q ∈ Q we recursively
define δ(q, ad1) = δ(δ(q, ad−1

1), ad). A word w ∈ Ah is accepted (or recognized)
by the DFA if δ(σ,w) ∈ F . The set of all words accepted by a DFA is called its
language. See in Figure 1 a graphical representation of a DFA.

We can now give the most important result of this part which is a simple
application of the classical Kleene and Rabin & Scott theorems [Hopcroft et al.,
2001]:

Theorem 2. For any regular language L there exists a unique (up to a unique
isomorphism) smallest DFA whose language is L. If we denote by E the size of
the regular expression corresponding to L, then the size R of the smallest DFA
is bounded by 2E .

For certain specific patterns (e.g. A∗w where w is a simple word), a minimal
DFA can be built directly using ad hoc construction or well-known algorithms
[e.g. Aho-Corasick algorithm, Aho and Corasick, 1975]. In general however,
building a minimal DFA from a regular expression usually requires three steps:

1) turning the regular expression into a Nondeterministic Finite Automaton –
NFA – [Thompson’s or Glushkov’s algorithm, Allauzen and Mohri, 2006];

3

0

B

1

A

11

3
A

4

B

A

2
B

A

B

B

5

A

B

A

B

6A

7
A

8B

B 9A

B

10A

B

A

B

A

Figure 1: Graphical representation of the DFA (A,Q, σ,F , δ) with A = {A, B},
Q = {0, 1, 2, . . . , 10, 11}, σ = 0, F = {11} and δ(0, A) = 1, δ(0, B) = 0, δ(1, A) =
1, δ(1, B) = 2, δ(2, A) = 3, δ(2, B) = 4, δ(3, A) = 5, δ(3, B) = 1, δ(4, A) = 5,
δ(4, B) = 0, δ(5, A) = 6, δ(5, B) = 2, δ(6, A) = 7, δ(6, B) = 8, δ(7, A) = 9,
δ(7, B) = 2, δ(8, A) = 10, δ(8, B) = 4, δ(9, A) = 1, δ(9, B) = 11, δ(10, A) = 5,
δ(10, B) = 11, δ(11, A) = 3 and δ(11, B) = 4. This DFA is the smallest one that
recognizes the language L = A∗W1 with A = {A, B}, W1 = ABA1AAA1AB and
hence |W1| = 4.

2) producing a DFA from the NFA [determinization; Subset construction, see
Hopcroft et al., 2001, Section 2.3.5];

3) minimizing the DFA by removing unnecessary states [for minimization; Hopcroft’s
algorithm, see Hopcroft, 1971, Hopcroft et al., 2001, Section 4.4.3].

For instance, The SPatt1 software allows to compute these DFA from reg-
ular expressions.

Now, as stated in Theorem 2, the smallest DFA may have a total of 2E states
in the worse case. However, this upper bound is seldom reached in practice. This
may be observed in Table 1 where the practical value of R is far below the upper
bound.

One should note that the complexity R of real-life patterns is quite different
from one problem to another. For example in Nuel et al. [2010], the authors
consider a total of 1, 276 protein signatures from the PROSITE database, for
which complexities range from R = 22 (RGD motif) to R = 837, 507 (APPLE
motif, PS00495), with a mode around R = 100.

2.2 Connection with patterns

We call pattern (or motif) over the finite alphabet A any regular language (finite
or not) over the same alphabet. For any patternW any DFA that recognizes the

1http://www.mi.parisdescartes.fr/~nuel/spatt

4

http://www.mi.parisdescartes.fr/~nuel/spatt

k 1 2 3 4 5 6 7 8 9 10
|Wk| 4 16 64 256 1 024 4 096 16 384 65 536 262 144 1 048 576
2E 512 2 048 8 192 32 768 1.3× 105 5.2× 105 2.1× 106 8.4× 106 3.4× 107 1.3× 108

R 12 27 57 122 262 562 1 207 2 592 5 567 11 957
F 1 3 6 13 28 60 129 277 595 1 278

Table 1: Characteristics of the smallest DFA that recognizes the language L =
A∗Wk with A = {A, B} and Wk = ABAkAAAkAB. The pattern cardinality is
|Wk| = 2k × 2k = 4k, R is the total number of states, F the number of final
states, and 2E = 27+2k is the theoretical upper bound of R.

0

B

1

A

24

3

A

4

B

25

B

9A

26 B

21

A

A

2
B A

B

5

A

6

B

A

7

B

B

8

A

B

A

B

A

B

10

A

B

11

A

12
A

13

B

B

14
A

15A

16

B

17
A

18B

B
19

A

B

20
A

B

A
B

22

A

B

A

B

23

A

B

A

BA

B

A

B

A

Figure 2: Graphical representation of the smallest DFA associated with W2 =
ABA2AAA2AB with A = {A, B}. This DFA has R = 27 states including F = 3
final states.

regular languageA∗W is said to be associated withW. According to Theorem 2,
there exists a unique (up to unique isomorphism) smallest DFA associated with
a given pattern. For example, if we work with the binary alphabet A = {A, B},
then the smallest DFA associated with Pattern W1 = ABA1AAA1AB has R = 12
states and F = 1 final state (see Figure 1), and the smallest DFA associated
with Pattern W2 = ABA2AAA2AB has R = 27 states and F = 3 final states (see
Figure 2).

It is well known from the pattern matching theory [Cormen et al., 1990,
Crochemore and Hancart, 1997] that such a DFA provides a simple way to find
all occurrences of the corresponding pattern in a sequence.

Proposition 3. Let W be a pattern over the finite alphabet A and (A, Q,
σ, F , δ) be a DFA that is associated to W. For each deterministic sequence
x`1 = x1x2 . . . x` over A, we recursively define the sequence y`0 = y0y1 . . . y` over
Q by y0 = σ and yi = δ(yi−1, xi). For all 1 6 i 6 ` we then have the following

5

property2: xi1 ∈ A∗W ⇐⇒ yi ∈ F .

Proof. Since the DFA is associated to W, xi1 ∈ A∗W is equivalent to δ(σ, xi1) ∈
F . One can then easily show by induction that δ(σ, xi1) = yi and the proof is
achieved.

Example 4. Let us consider the pattern W1 = ABA1AAA1AB over the binary
alphabet A = {A, B}. Its smallest associated DFA is represented in Figure 1. If
x20

1 = ABAAABBAAAABBAABABAB is a binary sequence, we build the sequence y20
0

according to Proposition 3 and we get:

x20
1 = − A B A A A B B A A A A B B A A B A B A B

y20
0 = 0 1 2 3 5 6 8 4 5 6 7 9 11 4 5 6 8 10 11 3 2

where final states are in bold. We hence see two occurrences ofW1: one ending
in position 12 (ABBAAAAB) and one in position 18 (ABBAABAB, which overlaps the
previous occurrence).

If this approach may be useful to localize pattern occurrences in deterministic
sequences, one should note that NFA (Nondeterministic Finite Automata) are
usually preferred over DFA for such a task since they are far more memory
efficient and can achieve similar speed thanks to lazy determinization [Le Maout,
2011]. The DFA-based approach however has a great advantage when we work
with random sequences.

2.3 Markov chain embedding

Let X`
1 be a homogeneous3 order m > 1 Markov chain over A whose starting

distribution and transition matrix are given for all (a, b) ∈ Am ×A by µ(a)
def
=

P(Xm
1 = a) and π(a, b)

def
= P(Xi = b|Xi−1

i−m = a). Let now W be a regular
expression over A, our aim being to obtain the distribution of the random
number of occurrences of W in X`

1 defined4 by:

N`
def
=

∑̀
i=m+1

1{Xi1∈A∗W} (1)

where 1E is the indicatrix function of event E (the function takes the value 1 is
E is true, 0 else).

Let (A,Q, σ,F , δ) be a minimal DFA associated to W. We additionally
assume that this automaton is non m-ambiguous [a DFA having this property
is also called an m-th order DFA in Lladser, 2007] which means that for all

q ∈ Q, δ−m(p)
def
= {am1 ∈ Am1 ,∃p ∈ Q, δ (p, am1) = q} is either a singleton, or the

2xi1 ∈ A∗W means that an occurrence of W ends in position i in x`1.
3Please note that Theorem 5 can be easily generalized to heterogeneous Markov chains,

but we focus here on the simpler case since our computational approaches are only valid for
homogeneous Markov chains.

4For simplification, we deliberately ignore possible occurrences of W in Xm
1 .

6

empty set. When the notation is not ambiguous, δ−m(p) may also denote its
unique element (singleton case). We then have the following result:

Theorem 5. We consider the random sequence over Q defined by Y0
def
= σ

and Yi
def
= δ(Yi−1, Xi), ∀i, 1 6 i 6 `. Then (Yi)i>m is a homogeneous order

1 Markov chain over Q′ def
= δ(σ,AmA∗) such that, for all p, q ∈ Q′ and 1 6

i 6 ` − m, the starting vector up
def
= P (Ym = p) and the transition matrix

Tp,q
def
= P (Yi+m = q|Yi+m−1 = p) are given by:

up =

{
µ (δ−m(p)) if δ−m(p) 6= ∅
0 otherwise

; (2)

Tp,q =

{
π (δ−m(p), b) if ∃b ∈ A, δ(p, b) = q
0 otherwise

(3)

and we have the following property:

Xi
1 ∈ A∗W ⇐⇒ Yi ∈ F . (4)

Proof. The result is immediate considering the properties of the DFA and Propo-
sition 3. See Lladser [2007] or Nuel [2008] for more details.

From now on, we consider the decomposition T = P + Q where for all
p, q ∈ Q′ we have:

Pp,q =

{
Tp,q if q /∈ F
0 if q ∈ F and Qp,q =

{
0 if q /∈ F
Tp,q if q ∈ F . (5)

We finally introduce the dimension R
def
= |Q′| and the column vector v

def
=

(1, . . . , 1)> of size R, where > denotes the transpose symbol.

Corollary 6. With the same hypothesis and notations as in Theorem 5, the
probability generating function (pgf) of N` is then explicitly given by:

G`(y)
def
=
∑
n>0

P(N` = n)yn = u(P + yQ)`−mv (6)

and we also have:

G(y, z)
def
=
∑
`>m

∑
n>0

P(N` = n)ynz` =
∑
`>m

G`(y)z` = u(I−zP−yzQ)−1vzm (7)

where I denotes the identity matrix.

Proof. It is clear that uT` gives the marginal distribution of Y`. If we now intro-
duce the dummy variable y to keep track of the number of pattern occurrences,
then u(P + yQ)` gives the joint distribution of (Y`, N`). Marginalizing over Y`
through the product with v hence achieves the proof of Equation (6). Equa-
tion (7) is then obtained simply by exploiting the relation

∑
k>0 Mk = (I−M)−1

with M = z(P + yQ).

7

Example 7. Considering the same pattern and associated DFA as in Exam-
ple 4, one can directly apply Theorem 5 to get the expression of T, the transition
matrix of Y `0 over Q = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11}:

T =

πB,B πB,A 0 0 0 0 0 0 0 0 0 0
0 πA,A πA,B 0 0 0 0 0 0 0 0 0
0 0 0 πB,A πB,B 0 0 0 0 0 0 0
0 0 πA,B 0 πA,A 0 0 0 0 0 0 0
πB,B 0 0 0 0 πB,A 0 0 0 0 0 0
0 0 πA,B 0 0 0 πA,A 0 0 0 0 0
0 0 0 0 0 0 0 πA,A πA,B 0 0 0
0 0 πA,B 0 0 0 0 0 0 πA,A 0 0
0 0 0 0 πA,B 0 0 0 0 0 πA,A 0
0 πA,A 0 0 0 0 0 0 0 0 0 πA,B
0 0 0 0 0 πA,A 0 0 0 0 0 πA,B
0 0 0 πB,A πB,B 0 0 0 0 0 0 0

where πa,b = P(X2 = b|X1 = a) for all a, b ∈ {A, B}.

3 Partial recursion

We want here to focus directly on the expression of G`(y) in Equation (6) rather
than exploiting the bivariate expression G(y, z) of Equation (7). A straightfor-
ward approach consists in computing recursively u(P + yQ)i (or conversely
(P + yQ)iv) up to i = ` −m taking full advantage of the sparse structure of
matrices P and Q at each step. This is typically what is suggested in Nuel
[2006a]. The resulting complexity to compute P(N` = n) is then O(Ω × n × `)
in time and O(Ω × n) in space, where Ω = R × |A| is the number of nonzero
elements in P + Q. This straightforward (but effective) approach is easy to
implement and is from now on referred as the “full recursion” Algorithm.

Another appealing idea is to compute directly the matrix (P + yQ)`−m us-
ing a classical dyadic decomposition of ` − m. This is typically the approach
suggested by Ribeca and Raineri [2008]. The resulting complexity to obtain
P(N` = n) is O(R3 × n2 × log `) in time and O(R2 × n × log `) in space. The
algorithm can be further refined by using FFT-polynomial products (and a very
careful implementation) in order to replace the quadratic complexity in n by
O(n log n). The resulting algorithm however suffers from numerical instabili-
ties when considering the tail distribution events and is therefore not suitable
for computing extreme p-values. If this approach might offer interesting per-
formance for relatively small values of R and n, its main drawback is that it
totally ignores the sparse structure of the matrices and therefore fails to deal
with highly complex patterns (large R).

Here we want to introduce another approach that fully takes advantage of
the sparsity of the problem to display a linear complexity with R (as with full
recursion) but also dramatically reduces the complexity in terms of the sequence
length ` in order to be suitable for large scale problems.

8

From now on, let us assume that P is an irreducible and aperiodic positive
matrix and we denote by λ its largest eigenvalue (we know that λ > 0 thanks

to Perron-Frobénius). Let us define P̃
def
= P/λ and Q̃

def
= Q/λ.

For all i > 0 and all k > 0 we consider the dimension R column-vector

Fk(i)
def
= [yk](P̃ + yQ̃)iv. By convention, Fk(i) = 0 if i < 0. It is then possible

to derive from Equation (6) that P(N` = k) = [yk]F (y) = λ`−muFk(` − m).
Additionally, we recursively define the dimension R column-vector Dk

j (i) for all

k, i, j > 0 by D0
k(i)

def
= Fk(i) and, if i > 1 and j > 1, Dj

k(i)
def
= Dj−1

k (i) −
Dj−1
k (i− 1) so that Dj

k(i) =
∑j
δ=0(−1)δ

(
j
δ

)
Fk(i− δ).

Lemma 8. For all j > 0, k > 1, and i > j we have:

Dj
0(i+ 1) = P̃Dj

0(i) and Dj
k(i+ 1) = P̃Dj

k(i) + Q̃Dj
k−1(i). (8)

Proof. The results for j = 0 come directly from the definition of D0
k(i) = Fk(i),

the rest of the proof is achieved by induction.

From now on, all asymptotic developments in the current section are sup-
posed to be valid for i→ +∞.

Lemma 9. For all k > 0, there exists a dimension R column-vector Ck such
that:

Dk
k(i) = Ck +O(νi/(k+1)) (9)

where ν denotes the magnitude of the second eigenvalue of P̃ when we order
the eigenvalues by decreasing magnitude.

Proof. It is clear that D0
0(i) = P̃iv, elementary linear algebra hence proves the

lemma for k = 0 with C0 = P̃∞v. We assume now that Equation (9) is proved
up to a fixed k − 1 > 0. A recursive application of Lemma 8 gives for all α > k
and i > 0 that Dk

k(i+ α) = P̃iDk
k(α) +

∑i
j=1 Pi−jQ̃Dk

k−1(j − 1 + α).

Thanks to Equation (9) it is clear that the second term of this sum is a O(να/k),

and we then have Dk
k(i+α) = P̃∞Dk

k(α)+O(νi)+O(να/k). Therefore we have
Dk+1
k (i + α) = O(νi) + O(να/k). For any j > k + 1, if we set α = j k

k+1 , then

we obtain Dk+1
k (j) = O(νj/(k+1)), which finishes the proof.

Proposition 10. For all j > 0, α > 0 and i > j + α we have:

Dj
k(i) =

k∑
j′=j

(
i− α− k + j′ − j

k − j

)
Dj′

k (α+ j′)+

(
i− α− j
k − j

)
O
(
να/(k+1)

)
(10)

and in particular for j = 0 we have:

Fk(i) =

k∑
j′=0

(
i− α− k + j′

k

)
Dj′

k (α+ j′) +

(
i− α
k

)
O
(
να/(k+1)

)
. (11)

9

Input: The matrices P,Q, the vectors u,v, n + 1 column-vectors ∆0, ∆1, . . .,
∆n of dimension R, n+ 1 real numbers R0, R1, . . . , Rn, and a real number C
// Compute λ through the power method
∆0 ← v, λ← 1
while λ has not converged with relative precision ε do
λ← P∆0/∆0 (point-wise division) and ∆0 ← P∆0

// Normalize P and Q
P← P/λ and Q← Q/λ
// Compute α such as Cn = Dn

n(α)
∆0 ← v
for i = 1 . . . n do

for k = i . . . 1 do
∆k ← P∆k + Q∆k−1 −∆k // so that ∆k now contains Di

k(i)
∆0 ← P∆0 −∆0 // so that ∆0 now contains Di

0(i)
for i = n+ 1 . . . `−m do

for k = n . . . 1 do
∆k ← P∆k + Q∆k−1 // so that ∆k now contains Dn

k (i)
∆0 ← P∆0 // so that ∆0 now contains Dn

0 (i)
if ∆n as converged towards Cn with relative precision η then
α← i and break

// Compute all D0
k(α− n) for 0 6 k 6 n

∆0 ← v
for i = 1 . . . α− n do

for k = n . . . 1 do
∆k ← P∆k + Q∆k−1 // so that ∆k now contains D0

k(i)
∆0 ← P∆0 // so that ∆0 now contains D0

0(i)

// Compute Rk
def
= Pk,`−m(α− n+ k) for all 0 6 k 6 n

for k = 0 . . . n do
Rk ← u∆k

C ← 1.0
for k = 1 . . . n do

for j = n . . . 1 do
∆j ← P∆j + Q∆j−1 −P∆j // so that ∆j now contains Dk

j (α− n+ k)
∆0 ← P∆0 −∆0 // so that ∆0 now contains Dk

0(α− n+ k)
C ← C × (`− d− α+ n− k + 1)/k
for j = k . . . n do
Rk ← Rk + Cu∆k

Output: return P(N` = k) = Rk for all 0 6 k 6 n

Algorithm 1: Compute P(N` = k) with relative error η for all 0 6 k 6 n using
floating point arithmetic with a relative error ε (< η).

10

Proof. This is proved by induction, using repetitively Lemma 9 and the fact
that Dj

k(i) = Dj
k(α+ j) + Dj+1

k (α+ j + 1) + . . .+ Dj+1
k (i).

Corollary 11. For any α > 0, for any k > 0 and `−m > 0 we have:

P(N` = k) = λ`−m
k∑

j′=0

(
`−m− α− k + j′

k

)
uDj′

k (α+ j′)︸ ︷︷ ︸
Pk,`−m(α)

+ λ`−m
(
`−m− α

k

)
O
(
να/(k+1)

)
and Pk,`−m(α) approximates P(N` = k) with a relative error of:∣∣∣∣Pk,`−m(α)− P(N` = k)

P(N` = k)

∣∣∣∣ =
λ`−m

P(N` = k)

(
`−m− α

k

)
O
(
να/(k+1)

)
.

These results lead to Algorithm 1 which allows to compute P(N` = k) for
all 0 6 k 6 n for a given n > 0. The workspace complexity of this algo-
rithm is O(n × R) and since all matrix vector products exploit the sparse
structure of the matrices, the time complexity is O(α × n × |A| × R) with
α = O

(
n2 log(`)/ log(ν−1)

)
where ν is the magnitude of the second largest eigenvalue.

4 High-order lifting

An alternative appealing idea consists of using Equation (7) to compute explic-
itly the rational function G(y, z) and then perform (fast) Taylor expansions, first
in z, then in y in order to get the appropriate values of P(N` = n) [Nicodème
et al., 2002, Lladser, 2007].

To compute G(y, z), a really naive approach would solve the bivariate poly-
nomial system (7) over the rationals. In the solution, the polynomials would be
of degree at most R in each variable and the rationals of size at most R log2(R),
thus yielding a binary cost of O(R9 log2

2(R)) already for the computation of
G(y, z) and a further cost of the same magnitude for the extraction of the coef-
ficient of degree ` in the development with, e.g., linear system solving.

Since the complexity of computing this generating function is usually pro-
hibitive, we first use modular methods and Chinese remaindering to compute
with polynomials and rationals so that the cost of the arithmetic remains linear.
Also, to take advantage of the sparsity we do not invert the matrix but rather
compute directly a rational reconstruction of the solution from the first iterates
of the series, Equation (6). We thus only use sparse matrix-vector products and
do not fill in the matrix. Note that this direct rational reconstruction is equiva-
lent to solving the system using iterative z-adic methods. Finally, we compute
only small chunks of the development of Equation (7) using the “high-order”

11

lifting of Storjohann [2003], or the method of Fiduccia [1985], modulo yν+1. We
aim to compute only all the coefficients g`,n = P(N` = n) for a given ` and a
given n ∈ [µ, ν], for an interval [µ, ν] with a small ν, but where ` is potentially
large. Thus we want to avoid computing the whole Taylor development of the
fraction.

Indeed, let G(y, z) = B(y,z)
A(y,z) with B,A ∈ Q[y, z] of degrees dAz = deg(A, z)

and dBz = deg(B, z) ≤ dAz − 1. Overall let us denote by d a bound on dAz and
thus on dBz. We can assume that A and B are polynomials since we can always
pre-multiply them both by the lowest common multiple of their denominators.

Thus we write B =
∑dBz
i=0 bi(y)zi and, if we denote by [zi]P (z) the i-th

coefficient of the polynomial P , then we have:

[z`]G(y, z) =

dBz∑
i=0

bi(y)× [z`−i]

(
1

A(y, z)

)
Now, the idea is that for a given coefficient `, the only coefficients of the

development of 1/A that are needed are the coefficients of order ` − m to `,
denoted by [A−1]``−m. This is precisely what Storjohann’s “High-order” lifting
can compute quickly.

We will use several Chinese remaindering and rational reconstructions.
In our cases, we have a series

∑∞
giz

i which is actually equal to a fraction
B(z)
A(z) by definition. Therefore, provided that we consider sufficiently many of the

first coefficients in the development, the rational reconstruction of the truncated
series

∑2d
giz

i, even with rational polynomial in y as coefficients, will eventually
yield A(z) and B(z) as solutions.

4.1 Rational reconstruction

The first step is thus to recover both polynomials B and A from the series
development of Equation (7). Now, one could compute the whole rational re-
construction of a polynomial over the domain of the rationals, and then use
d2 × d2 operations for the domain arithmetic, which would yield a d6 complex-
ity to compute all the d2 coefficients. We rather use two modular projections,
one for the rational coefficients, one for the polynomials in y, in order to reduce
the cost of the arithmetic to only d2. Then the overall cost will be dominated
by the cost of the computation of only d coefficients of the series, as shown in
Proposition 12.

Our algorithm has then four main steps:

1) We take the series in z modulo some prime numbers (below 2γ where γ is,
e.g., close to word size) and some evaluation points on the variable y;

2) We perform a univariate polynomial fraction reconstruction in z over each
prime field and for each evaluation point;

12

3) We interpolate the polynomials in y over the prime field from their evalua-
tions;

4) We finally Chinese remainder and rational reconstruct the rational coeffi-
cients from their modular values.

The details of the approach are given in Algorithm 2 whose complexity is
given by the following proposition.

Input: The matrices P, Q and the row and column vectors u, v defining
G(y, z).

Output: Polynomials B(y, z) and A(y, z) of degree ≤ d with G(y, z) = B(y,z)
A(y,z)

1: Let G(y, z) = uv, v0(y) = v;
2: for n = 1 to 2d do
3: vn(y) = (P + yQ)vn−1(y);
4: G(y, z) = G(y, z) + uvn(y)zn;
5: Let d = (2d+ 2) log2γ (||P,Q,u,v||∞);
6: for i = 0 to d do
7: Let pi ≥ 2γ > d be a prime, coprime with p0, . . . , pi−1;
8: Gi(y, z) = G(y, z) mod pi;
9: for j = 0 to d do

10: Let yj be an element modulo pi, distinct from y0, . . . , yj−1;
11: Gi,j(z) = Gi(yj , z) mod pi;

12:
Bi,j(z)
Ai,j(z)

=FractionReconstruction(Gi,j(z)) mod pi mod (y − yj);
// Bi,j(z) =

∑d
n=0Bi,j,nz

n and Ai,j(z) =
∑d
n=0Ai,j,nz

n

13: for n = 0 to d do
14: Interpolate Bi,n(y) mod pi from Bi,j,n for j = 0..d;
15: Interpolate Ai,n(y) mod pi from Ai,j,n for j = 0..d;

// Bi(y, z) =
∑d
n=0Bi,n(y)zn and Ai(y, z) =

∑d
n=0Ai,n(y)zn

16: for n = 0 to d do
17: for l = 0 to d do
18: ChineseRemainder [ynzl]B(y, z) from [ynzl]Bi(y, z) for i = 0..d;
19: ChineseRemainder [ynzl]A(y, z) from [ynzl]Ai(y, z) for i = 0..d;
20: RationalReconstruct both obtained coefficients;

Algorithm 2: Modular Bivariate fraction reconstruction over the rationals.

Proposition 12. Let d = max{dA, dB} be the degree in z and ν be the largest
degree in y of the coefficients of A and B. Let Ω = |A|R be the total number
of nonzero coefficients of the R×R matrices P and Q. If the coefficients of the
matrices P, Q, u and v, and |A| are constants, then the cost of the computation
of B and A in Algorithm 2 is

O
(
d3R log(R)

)
,

where the intermediate memory requirements are of the same order of magni-
tude.

13

Proof. Polynomial fraction reconstruction of degree d requires 2d coefficients.
The computation of one coefficient of the evaluated series modulo costs one
matrix-vector product, Ω word operations, and a dot product of size R ≤ Ω.
By definition deg(gj(y)) = deg((P + yQ)j) ≤ j, thus ν ≤ 2d and, similarly, the
size of the rational coefficients is bounded by (2d+ 2) log(R||P,Q,u,v||2∞).

Thus steps 3 and 4 in Algorithm 2 cost

d∑
n=0

O(Ωn2 log(R||P,Q,u,v||2∞) = O(d3Ω log(R||P,Q,u,v||2∞)

operations.
Then a fraction reconstruction of degree d costs less than O(d2) operations

by Berlekamp-Massey or the extended Euclidean algorithm and an interpolation
of d points costs less than O(d2) operations so that, overall,

steps 12, 14 and 15 cost less than O(d4) operations. Then Chinese remain-
dering and rational reconstruction of size d costs less than O(d2) for an overall
cost of

O(d4 log2(||P,Q,u,v||∞).

As d ≤ R ≤ Ω, if log2
2γ (||P,Q,u,v||∞) = O(1), then this latter term is domi-

nated by O(d3Ω log(R)). Finally, if |A| is constant, we have that Ω = O(R).
Now, the memory requirements are bounded by those of the series. The

vector vn(y) is of size R, of degree n in y with rational coefficients of size
n log(R||P,Q,u,v||2∞). Thus vn(y) and the dot product uvn(y) are of size

O(Rn2 log(R)) so that G(y, z) =
∑2d
n=0 uvn(y) is O(R log(R)d3).

Thus the dominant computation in Algorithm 2 is the computation of the
first terms of the series G(y, z).

4.2 Early termination strategy for the determination of
the fraction degrees

There remains to determine the value of the degree d = max{dA, dB} for the
actual solutions A and B. As the series is the solution of a polynomial linear
system of size R and degree 1, the determinant, and thus the denominator and
numerator of the solution are of degree bounded by R. Now in practice, we will
see that very often this degree is much smaller than R. As the complexity is
cubic in d it is of major importance to determine as accurately as possible this
d beforehand.

The strategy we propose is an early termination, probabilistic of Las Vegas
type, i.e. it is always correct, but sometimes slow. We reconstruct the rational
fraction only from a small number d0 of iterations, and then again after d0 + 1
iterations. If both fractions are identical with numerator and denominator of
degrees strictly less than d0, then there is a good chance that the recovered
fraction is the actual one. This can be checked by just applying A to the
obtained guess and verifying that it corresponds to the right-hand side. If the

14

fractions disagree or if the check fails, one can then try again after some more
iterations.

In our bivariate case over the rationals, we have a very fast strategy which
consists in finding first the degree at a single evaluation point modulo a single
prime and e.g. roughly doubling the number of iterations at each failure. This
search thus requires less than 2× 2d iterations and has then a marginal cost of
O(dΩ + d2).

4.3 High-order lifting for polynomial fraction development

Once the bivariate fraction B
A is recovered, the next step is to compute the

coefficients of degree ` ∈ [α, β] of its series development. The idea of the high-
order lifting of Storjohann [2003] is to make use of some particular points in the
development, that are computable independently. Then these points will enable
fast computation of only high-order terms of the development and not of the
whole series. In the following, we call these points residues.

We first need the fundamental Lemma 13.

Lemma 13. Let A,B ∈ R[z] be of respective degrees dA and dB ≤ dA−1. Then
for all ` ∈ N, there exists B` ∈ R[z] of degree dB` ≤ dA−1 and (gi)i=0..`−1 ∈ R`
such that

B(z)

A(z)
=

`−1∑
i=0

giz
i +

B`(z)

A(z)
z`

Proof. We use the same construction as Salvy [2009]: the initial series rewrites as
B
A =

∑∞
i=0 giz

i =
∑`−1
i=0 giz

i+z`
∑∞
i=0 gi+`z

i. Then let B` = B−A
(∑`−1

i=0 giz
i
)

.

By construction, degree(B`) = dA+`−1, but we also have thatB` = z`
∑∞
i=0 gi+`z

i.
We thus let B` = B`z

−` which satisfies the hypothesis.

The question is how to compute efficiently the `th residue B` defined in
Lemma 13. The idea is to use the high-order lifting of Storjohann [2003].

We follow the presentation of the lifting of Salvy [2009] but define a slightly
different bracket notation for chunks of a polynomial:

[A(z)]βα = aαz
α + . . .+ aβz

β (12)

Roughly there are two main parts. The first one generalizes the construction
of Lemma 13 using only 2d coefficients of A−1. The second part builds small
chunks of size 2d of A−1 at high-orders, each being close to a power of 2.

The efficient computation of residues given in Algorithm 3 takes simple ad-
vantage of the fact that a given residue has a small degree and depends only
on a small part of the development of A−1. We first give a version where the
adequate part of A is given as input. We will later detail the way to efficiently
compute these coefficients.

Lemma 14. The arithmetic complexity of Algorithm 3 is 2d2 operations.

15

Input: A, B, j and V = [A−1]j−1
j−2d+1.

Output: Bj defined by Lemma 13.

1: Compute U
def
= [V B]j−1

j−d;

2: Return Bj
def
= z−j [B −AU]j+d−1

j ;

Algorithm 3: Residue(A,B,j,V).

Then, we define Γ` to be the high-order residue of the expansion of A−1,
using Lemma 13 with B = 1:

1

A(z)
=

`−1∑
i=0

giz
i +

Γ`(z)

A(z)
z` (13)

The idea of the fast lifting is that when substituting A−1 in the right hand side
of Equation (13) by this actual right hand side, one gets:

`−1∑
i=0

giz
i + Γ`(z)

(
`−1∑
i=0

giz
i +

Γ`(z)

A(z)
z`

)
z` =

2`−1∑
i=0

giz
i +

Γ2`(z)

A(z)
z2`

This shows that Γ2` depends only on Γ` and of chunks of A−1, of size d, at 0
and around Γ`; more generally one gets the following formula:[

A−1
]β
α

= z`
[
Γ`[A

−1]β−`α−`−d

]β−`
α−`

(14)

This formula states, from Equation (13), that the Taylor coefficients of order

greater than `, can also be recovered from the Taylor development of Γ`(z)
A(z) .

Then the second part of the high-order lifting is thus Algorithm 4 which gets
a small chunk of A−1 at a double order of what it is given as input, as shown
in Figure 3.

Input: S = [A−1]d−1
0 , Ve = [A−1]2

e−1
2e−2d+1 and Γ2e−d defined by eq. (13).

Output: Γ2e+1−d and Ve+1 = [A−1]2
e+1−1

2e+1−2d+1.

1: Compute VL
def
= z2e−d[Γ2e−dVe]

2e−1
2e−d; // eq. (14)

2: Compute Γ2e+1−d
def
= z−2e+1+d[1−AVL]2

e+1−1
2e+1−d; // Residue(A, 1, 2e+1 − d)

3: Compute VH
def
= z2e+1−d[Γ2e+1−dS]d−1

0 ; // eq. (14)

4: Return Γ2e+1−d and Ve+1 = [A−1]2
e+1−1

2e+1−2d+1

def
= [VL]2

e+1−d−1
2e+1−2d+1 + VH .

Algorithm 4: Double-Order(S, T,Γ, e).

Lemma 15. The arithmetic complexity of Algorithm 4 is 3d2 operations.

Proof. Below are the complexity of the successive steps of Algorithm 4.

16

0

...

Degrees
2e−1 2e 2e+1

S

Ve Ve+1

Γ2e−d Γ2e+1−d

Figure 3: Computing chunks at double order.

1) One truncated polynomial multiplication of degree d− 1, complexity d2;

2) One truncated polynomial multiplication of degree d− 1, complexity d2;

3) One truncated polynomial multiplication of degree d− 1, complexity d2.

4) No-op, V (L) and V (H) do not overlap.

Then Algorithm 5 gives the complete precomputation to get a sequence of
doubling order Γ’s which will enable fast computations of the chunks of the
Taylor expansion.

Input: A polynomial A(z) of degree d.
Input: A valuation α and a degree β ≥ d.
Output: e0 s.t. 2e0−1 < 2d ≤ 2e0 ; eβ s.t. 2eβ ≤ β + d < 2eβ+1.
Output: The Taylor development of 1

A up to δ = max{2e0 − 1;β − α}.
Output: (Γ2e0−d, . . . ,Γ2eβ−d).

1: Compute e0 s.t. 2e0−1 < 2d ≤ 2e0 ; eβ s.t. 2eβ ≤ β + d < 2eβ+1;

2: Let ξ0 = ke0
def
= 2e0 − d and δ

def
= max{2e0 − 1;β − α};

3: Compute S
def
= [A−1]δ0, via Taylor expansion of A;

4: U0
def
= [A−1]ξ0−1

ξ0−d = [S]ξ0−1
ξ0−d;

5: Compute Γξ0
def
= z−ξ0 [I −AU0]ξ0+d−1

ξ0
; // Residue(A, 1, ξ0)

6: Ve0
def
= [A−1]ξ0+d−1

ξ0−d+1 = [S]2
e0−1

2e0−2d+1;
7: for i = e0 + 1 to eβ do

8: ki
def
= 2i − d;

9: (Γki ;Vi)
def
=Double-Order([A−1]d−1

0 , Vi−1,Γki−1
, i− 1);

Algorithm 5: High-Order(A,α, β).

Figure 4 shows which high-order terms are recovered during these giant steps
of precomputation, for a computation using 50 precomputed terms of the Taylor
development with Algorithm 5 and degree(A) = 6.

17

[A−1]50
0

"" ((**

// [A−1]63
53

//

$$

[A−1]127
117

//

%%

[A−1]255
245

//

%%

[A−1]511
501

Γ10
// Γ26

//

<<

Γ58
//

::

Γ122
//

99

Γ250
//

99

Γ506

Figure 4: High-Order lifting to 2blog2(β)c − 1 computing Γ24−6, Γ25−6, Γ26−6,
Γ27−6, Γ28−6 and Γ29−6.

Lemma 16. The arithmetic complexity of Algorithm 5 is less than:

3 log2

(
β + d

2d

)
d2 + max{4d2; d(β − α+ 2d)}

Proof. Below are the complexity of the successive steps of Algorithm 5.

3. One Taylor expansion of an inverse of degree d up to the degree δ ≤
max{2d;β − α}, complexity

∑d
i=1 2i − 1 +

∑δ
i=d+1 2d − 1 ≤ d(2δ − d) ≤

max{3d2; d(β − α+ d)}.

5. One truncated polynomial multiplication of degree d− 1, complexity d2.

9. eβ−e0 ≤ log2

(
β+d
2d

)
calls to Algorithm 4, complexity bounded by 3 log2

(
β+d
2d

)
d2.

Once the high-order terms are computed, one can get the development
chunks of [BA]βα as shown in Algorithm 6.

Input: A, B, (Γi) as defined in Equation (13).
Input: A valuation α, a degree β and S = [A−1]δ0, with δ ≥ β − α.
Output: [BA−1]βα

1: if β ≤ δ then
2: Return [BS]βα;
3: else
4: Bα

def
=Residue(A,B, (Γi), S, α);

5: Return zα[BαS]β−α0 ; // eq. (14)

Algorithm 6: DevelChunk(A,B, (Γi), S, α, β).

Algorithm 6 uses a variant of Algorithm 3, which needs to compute on the
fly the chunks of the inverse it requires. This variant is shown in Algorithm 7.

The point is that these chunks of the development of the inverse are recovered
just like the chunks of any fraction, but with some high-order residues already
computed. Algorithm 8 is thus a variant of Algorithm 6 with B = 1 and a
special residue call.

18

Input: A, B, (Γi), S, α as in Algorithm 6.
Output: Bα defined by Lemma 13.

1: if α = 0 then
2: Return B;
3: else
4: V

def
=InverseChunk(A, (Γi), S, α− 2d+ 1, α− 1);

5: U
def
= [V B]α−1

α−d;

6: Return z−α[B −AU]α+d−1
α . // Residue(A,B, α, V)

Algorithm 7: Residue(A,B, (Γi), S, α).

Input: A, (Γi), α, β, S = [A−1]δ0 with δ ≥ β − α as in Algorithm 6.
Output: [A−1]βα

1: if β ≤ δ then
2: Return [S]βα;
3: else
4: Γα

def
=GetΓ(A, (Γi), S, α); // Residue(A, 1, α);

5: Return zα[ΓαS]β−α0 ; // eq. (14)

Algorithm 8: InverseChunk(A, (Γi), S, α, β).

Algorithm 9 is this special residue call, a variant of Algorithm 7, which uses
the precomputed high-order Γi to get the actual Γα it needs, in a logarithmic
binary-like decomposition of α.

Input: A, (Γi), S, α as in Algorithm 6.
Output: Γα;

1: if α = 0 then
2: Return 1.
3: else if α ≤ δ then

4: U
def
= [S]α−1

0 ;
5: Return z−α[1−AU]α+d−1

α . // Residue(A, 1, α, S)
6: else
7: a = blog2(α+ d)c; // so that 2a ≤ α+ d < 2a+1

8: Return Residue(A,Γa, (Γi), α+ d− 2a);

Algorithm 9: GetΓ(A, (Γi), S, α).

We have shown in Figure 4 the high-order precomputation of the different
Γ’s required for the computation, e.g., of [BA−1]1000

950 = [B950A
−1]50

0 , with A of
degree 6. Then, Figure 5 shows the successive baby step calls of residue and
inverse chunks needed to compute the 950th residue B950

Lemma 17. The arithmetic complexity of computing the [α, β] chunk of the

19

[BA−1]1000
950 [A−1]50

0
oo [A−1]949

939

i-chunk

{{

[A−1]432
422

i-chunk

{{

[A−1]171
161

i-chunk

{{

[A−1]38
28

i-chunk

{{
B950

Resi
due

dd

Γ939

GetΓ

OO

Γ422

GetΓ

OO

Γ161

GetΓ

OO

Γ506

Residue

OO

Γ250

Residue

OO

Γ122

Residue

OO

Figure 5: DevelChunk expansion (alg. 6 from right to left) where some chunks
(boxed) were precomputed by high-order lifting (alg. 5 and fig. 4).

development of [BA−1(z)]βα via Algorithm 6 is less than:

log2

(
β + d

2d

)(
3d2 + 2(β − α)2

)
Proof. Except for the calls to other algorithms, DevelChunk (alg. 6) has com-
plexity (β − α)2, GetΓ (alg. 9) has complexity d2, InverseChunk (alg. 8) has
complexity (β − α)2 and Residue (alg. 7) has complexity 2d2.

Now the logarithmic binary decomposition of β shows that GetΓ, Inver-

seChunk and Residue are each called less than log2

(
β+d
2d

)
times.

4.4 Fiduccia’s algorithm for linear recurring sequences

An alternative to the high-order lifting is to directly use Fiduccia’s algorithm for
linear recurring sequences [Fiduccia, 1985]. Its complexity is slightly different
and we show next that it can be interesting when β = α.

4.4.1 Single coefficient recovery

With the same notations as before, one wants to solve B = A× T for B and A
polynomials of degree bounded by d and T a series development. We want to
obtain the coefficients of T only between degrees α and β. The algorithm is as
follows: solve directly for the first d terms of T and afterwards, ifA =

∑d
i=0 aiZ

i,
we obtain a recurring linear sequence for the coefficients of T =

∑∞
tiZ

i:

a0t` = −
d∑
i=1

ait`−i (15)

If a0 6= 0, let us define the characteristic polynomial P (Z) = rev(A)/a0 =
A(1/Z)Zd/a0. This induces the following linear system involving the companion

20

matrix of P , C = Companion(P (Z)):

 t`−d+1

...
t`

 =

0 1 0 . . . 0
...

. . .
. . .

...
0 . . . 0 1
−ada0 . . . −a1a0

×
 t`−d

...
t`−1

 = CT ×

 t`−d
...

t`−1

By developing the above system `− d times, we obtain one coefficient of T with
the simple dot product:

t` = [0, . . . , 0, 1]×
(
CT
)`−d × [t1, . . . , td]

T = [t1, . . . , td]× C`−d × [0, . . . , 0, 1]T

(16)
The idea of Fiduccia is then to use the Cayley-Hamilton theorem, P (C) =
0, and identify polynomials with a vector representation of their coefficients,
in order to obtain C`−d × [0, . . . , 0, 1]T = Z`−d × Zd−1 = Z`−1 mod P (Z).
Now the modular exponentiation is obtained by binary recursive squaring in
log2(`− 1) steps, each one involving 1 or 2 multiplications and 1 or 2 divisions
of degree d, depending on the bit pattern of ` − 1. Thus, the complexity of
the modular exponentiation is bounded by log2(`)(8d2) with an average value
of log2(`)(6d2), exactly the same constant factor as for the high-order lifting
when β = α. The additional operations are just a dot product of the obtained
polynomial with [t1, . . . , td] and the initial direct Taylor recovery of the latter
coefficients, thus yielding the overall complexity for a single coefficient of the
series of log2(`)(6d2) + d2 arithmetic operations.

4.4.2 Cluster of coefficients recovery

In the more generic case of several clustered coefficients, ` ∈ [α, β], one needs to
modify the algorithm, in order to avoid computing β−α products by [0, . . . , 0, 1, 0, . . . , 0]T .
Instead one will recover d coefficients at a time, in β−α

d steps.

First the binary recursive powering algorithm is used to get β−α
d expres-

sions of Cα+(j−1)d =
∑d−1
i=0 c

(j)
i Ci, at an average global arithmetic cost of(

β−α
d log2(d) + log2(α)

) (
6d2
)
. Then for v = [t1, . . . , td]

T , the sequence v, Cv, C2v, . . . , Cd−1v

is computed once, iteratively. Finally this sequence is combined with the coeffi-

cients c
(j)
i to obtain the β−α coefficients at an overall cost of

(
β−α
d log2(d) + log2(α)

) (
6d2
)
+

4d2 + max{d2; d(2(β − α)− d}.

4.4.3 High-Order and Fiduccia algorithm comparison

We compare in Table 2 the arithmetic complexity bound of Storjohann’s high-
order lifting and the average complexity bound for Fiduccia’s algorithm.

From this table we see that Storjohann’s algorithm should be preferred when
β 6= α and that Fiduccia’s algorithm should be preferred when both conditions
β = α and “d is small” are satisfied. In practice, on the bivariate examples of
Section 5, with β = α, the differences remained within 20% and were always

21

Algorithm ` = β = α ` ∈ [α, β]

High-Order 6d2 log2(β
2d

) + 4d2
(
6d2 + 2(β − α)2

)
log2(β

2d
)

+d(β − α+ 2d)

Fiduccia 6d2 log2(β) + d2
(
6d2

) (
β−α
d

log2(d) + log2(α)
)

+d (2(β − α) + 3d)

Table 2: Complexities, for β > 2d, of Storjohann’s high-order lifting and Fiduc-
cia’s algorithm, the latter on average.

dominated by the fraction reconstruction. Therefore, in the following, we use
preferably Storjohann’s high-order lifting.

4.5 Bivariate lifting

We come back to the bivariate case of Equation (7). B, A and all the gl are
polynomials in y (not fractions). Therefore one can compute the lifting on z
using arithmetic modulo yn+1 for the coefficients. Operations in this latter
domain thus costs no more than O(n2) operations over Q. In the following we
use the formalism of the high-order lifting, but the algorithm of Fiduccia can
be used as a replacement if needed.

Finally, for faster computations, one can also convert the rational coefficients
to their floating point approximations in order to get Algorithm 10.

Input: B(y,z)
A(y,z) ∈ Q[y](z).

Output: A floating point
[
[BA−1]βα

]n
0
.

1: Bf (y, z) and Af (y, z) are the conversion of B and A in floating points.
2: (Γi) =High-Order(Af , α, β) modulo yn+1;
3: (gj(y))j=α,...,β =DevelChunk(Af , Bf , (Γi), α, β) modulo yn+1;
4: Return ([gj(y)]n0)j=α,...,β .

Algorithm 10: Bivariate floating point lifting.

Then floating point arithmetic modulo yn+1, together with Lemmata 17
and 16, yield the following complexity for the computation of chunks of the
Taylor development of a bivariate polynomial fraction:

Proposition 18. Let G(y, z) = B(y,z)
A(y,z) be a rational fraction with B and A

polynomials of degrees less than d with floating point coefficients. Suppose now
that β >> d, and that β − α = O(d). Then the overall complexity to compute[
[BA−1]βα

]n
0

with Algorithm 10 and classical polynomial arithmetic is

O(log(β)d2n2)

rational operations.

This improves e.g. on the algorithm of Knuth [1997] used in Nicodème et al.
[2002, Algorithm 8], which has complexity O(log(β)d3n2).

22

Note that, with fast floating point polynomial arithmetic (for instance using
FFT), our complexity would reduce to

O(log(β)d log(d)n log(n)) = O((nd)1+o(1) log(β)).

4.6 Overall complexity

Another improvement can be made on Algorithm 2 when the desired degree n
in y of the development is smaller than the degree d of the obtained bivariate
fraction: compute the series and the fraction reconstruction also modulo yn+1.
Recall that we consider computing P(N` = n) where the transition matrix is
of dimension R, with O(R) nonzero coefficients, and the rational fraction is of
degree d ≤ R. Therefore, the overall complexity of Algorithms 2-10, with fast
arithmetic, computing the latter, is bounded by:

O
(

min{n, d}d2R log(R) + log(`)d1+o(1)n1+o(1)
)

(17)

5 Applications

All the transition matrices arising from the DFA of the considered examples are
available from the “Sparse Integer Matrix Collection”5.

5.1 Toy-examples

We consider here an independent and identically distributed sequence of letters
that are uniformly distributed over the four letter alphabet A = {A, B, C, D}.
Partial recursion was performed with a floating point-arithmetic precision of
ε = 1/21024 ' 10−710 (implementation using the mpf class from the GMP6), and
relative error η = 10−15. Note that the high 1024bit precision was necessary
to avoid numerical stability issues in the numerical convergence of the partial
recursion algorithm. These issues seem to be directly connected with the order
of magnitude of 1−λ and the chosen precision (1024bits) solved these issues for
all the computation considered. It is nevertheless obvious that this phenomenon
requires further investigation. See discussion.

The bivariate polynomial fraction reconstruction was implemented using
LinBox7 and Givaro8 and the high-order lifting using Givaro and Mpfr9

with the mpreal10 C++ wrapper. All running times are expressed in seconds
and MT stands for Memory Thrashing.

5http://ljk.imag.fr/membres/Jean-Guillaume.Dumas/Matrices/DFA/
6GNU Multi-Precision library http://gmplib.org/
7http://linalg.org
8http://ljk.imag.fr/CASYS/LOGICIELS/givaro
9http://www.mpfr.org

10http://www.holoborodko.com/pavel/mpfr

23

http://ljk.imag.fr/membres/Jean-Guillaume.Dumas/Matrices/DFA/
http://gmplib.org/
http://linalg.org
http://ljk.imag.fr/CASYS/LOGICIELS/givaro
http://www.mpfr.org
http://www.holoborodko.com/pavel/mpfr

POSIX regex R F 1− λ t1 frac. deg. t2
AD(A|D){0}AD 5 1 3.7× 10−3 0.03 2/4 0.00
AD(A|D){2}AD 12 2 9.5× 10−4 0.11 6/8 0.01
AD(A|D){5}AD 50 8 1.2× 10−4 0.49 28/30 0.12
AD(A|D){10}AD 555 89 3.7× 10−5 6.14 321/323 3.18
AD(A|D){15}AD 6155 987 1.2× 10−7 73.46 3570/3572 17035.18

Table 3: Toy-example motifs over the alphabet A = {A, B, C, D}. R (resp. F) is
the number of states (resp. final states) of the minimal order 0 DFA associated
to the regular expression. λ is the largest eigenvalue of P, and t1 the time to
compute λ using the power method. “frac. deg.” corresponds to the fractional
degrees of G(y, z) and t2 is the time to compute G(y, z) using Algorithm 2.

In Table 3 we consider 5 example motifs of increasing complexities. For the
partial recursion approach, the eigenvalue λ is reported along with the corre-
sponding computational time. One should note that the high cost of this part
is mainly due to the 1024 bits precision floating point computation rather than
to the crudeness of the power approach (For computing the largest eigenvalue,
Lanczos iterations, the power approach, multigrid methods etc. display similar
performance on the considered examples: that is less than 1 second for any of
them in double precision. Our first implementation in arbitrary precision used
the power method, there of course being room for improvement).

We also report in this table the fractional degrees of G(y, z) computed
through the rational reconstruction. We can see that the limiting factor of
the series computation is memory. For example, for Motif AD(A|D){15}AD, only
storing the first 2d = 3570 + 3572 = 7142 bivariate terms over the rationals
of the series would require the order of 4d3R log28(R) ≈ 1.7 × 106 Gigabytes,
using the estimates of Proposition 12. Note that for this motif, the degrees in
z of the numerator and denominator of the fraction are only probabilistic since
they were computed modulo a random word-size prime number at a random
evaluation in y.

In Table 4 we perform the computation of P(N` = n) for the considered
motifs for various ranges of values for ` and n. For validation purposes, the
results of the partial recursion are compared to those of the slower full recur-
sion. The relative error between the two approaches is compared to expected
relative error η: in all cases but one the resulting error ratio (e.r.) is below
1.0 thus proving that both results are quite consistent. In the remaining case,
e.r. is only slightly larger than 1.0 (1.495) which remains acceptable. In terms
of computational time however, the partial recursion approach is dramatically
faster than the full recursion. This is especially the case for the more complex
motifs for which full recursion was not even performed in some cases.

With the high-order lifting approach (Algorithms 2-10) we see that whenever
the degree of the bivariate fraction remains small, the overall performance is
very good. Moreover, one could compute the fraction once and then use the

24

n α ` P(N` = n) e.r. t0 t3 +t1 t4 +t2

A
D
(
A
|
D
)
{0
}A
D 10 90 2, 000 9.12559× 10−2 0.234 0.50 0.04 0.07 0.01 0.01

20, 000 4.37982× 10−21 0.168 5.00 0.04 0.07 0.01 0.01
200, 000 3.82435× 10−302 0.063 49.92 0.04 0.07 0.01 0.01

100 666 2, 000 9.06698× 10−59 0.025 4.47 2.53 2.56 0.01 0.01
20, 000 2.95125× 10−3 0.586 46.04 2.53 2.56 0.01 0.01

200, 000 1.07460× 10−196 1.495 461.61 2.53 2.56 0.01 0.01

A
D
(
A
|
D
)
{2
}A
D 10 128 2, 000 6.06131× 10−5 0.025 1.12 0.13 0.24 0.01 0.02

20, 000 8.13580× 10−3 0.114 11.38 0.13 0.24 0.01 0.02
200, 000 2.54950× 10−67 0.158 113.13 0.13 0.24 0.01 0.02

100 971 2, 000 4.58582× 10−94 0.027 10.44 8.97 9.08 0.01 0.02
20, 000 1.14066× 10−34 0.260 107.05 8.97 9.08 0.01 0.03

200, 000 5.92396× 10−14 0.232 1075.90 8.97 9.08 0.01 0.03

A
D
(
A
|
D
)
{5
}A
D 2 158 2, 000 2.59931× 10−2 0.031 1.23 0.07 0.56 0.00 0.13

20, 000 2.55206× 10−1 0.040 12.80 0.07 0.56 0.01 0.13
200, 000 1.35276× 10−8 0.041 124.76 0.07 0.56 0.01 0.13

20 278 2, 000 1.59351× 10−22 0.055 8.76 2.18 2.67 0.02 0.64
20, 000 3.79239× 10−11 0.126 88.19 2.18 2.67 0.03 0.65

200, 000 5.79753× 10−2 0.044 912.11 2.18 2.67 0.04 0.66

A
D
(
A
|
D
)
{1
0
}A
D 2 75 2, 000 2.38948× 10−4 0.017 14.38 1.05 7.19 0.13 27.90

20, 000 4.4012× 10−3 0.093 148.49 1.05 7.19 0.32 28.07
200, 000 1.33166× 10−1 NA NA 1.05 7.19 0.48 28.12

20 380 2, 000 1.24717× 10−27 0.000 100.45 34.41 40.55 0.80 261.21
20, 000 1.25298× 10−25 NA NA 34.41 40.55 1.84 263.35

200, 000 6.25326× 10−18 NA NA 34.41 40.55 2.72 264.05

A
D
(
A
|
D
)
{1
5
}A
D 2 87 2, 000 6.74582× 10−6 0.001 153.54 12.95 86.41 0.16 17035.34

20, 000 7.02066× 10−5 NA NA 12.95 86.41 - -
200, 000 9.09232× 10−4 NA NA 12.95 86.41 - -

20 491 2, 000 5.72720× 10−30 NA NA 477.05 550.51 - -
20, 000 6.39056× 10−29 NA NA 477.05 550.51 - -

200, 000 1.42666× 10−27 NA NA 477.05 550.51 - -

Table 4: P(N` = n) for the toy-example motifs over the alphabet A = {A, B, C, D}
using a i.i.d. and uniformly distributed background model. α is the rank of the
partial recursion (depends only on n), “e.r.” is the ratio of the relative error
of the computation divided by the targeted relative error η = 10−15, t0 is the
running time to perform the computation using the full recursion, t3 is the
running time to perform the computation using the partial recursion (“+t1”
gives the total running time t1 + t3), t4 is the running time to perform the
computation using the high-order lifting (“+t2” give the total running time
t2 + t4).

25

very fast high-order lifting to recover any coefficient at a negligible cost. Now
when the degrees and the size of the involved matrices grows, memory becomes
the limiting factor, just to store the series, prior to any computation on it.

In empirical complexity, the full recursion increases at the expected O(n×`)
rate. On the other hand, the partial recursion running time is consistent with
an O(α× n) rate with α increasing at a roughly linear rate with n.

5.2 Transcription factors in Human Chromosome 10

In this section, we consider the complete DNA (A = {A, C, G, T}) sequence
of the Human Chromosome 10. In order to take into account the codon

(DNA words of size 3) structure of the sequence (which is known to play a
key role in coding sequences), we adjust a homogeneous order 2 Markov model
on the data11. The tri-nucleotide frequencies are given in Table 5; sequence
length is ` = 131, 624, 728 and the sequence starts with the two letters GA. The
maximum likelihood estimate (MLE) of the transition matrix of the model is
directly obtained from the observed counts of all DNA words of size 3. For
example, since N(TAA) = 2632852, N(TAC) = 1451956, N(TAG) = 1655432 and
N(TAT) = 2565811, we get the MLE:

P̂(Xi = C|Xi−2Xi−1 = TA) =
1451956

2632852 + 1451956 + 1655432 + 2565811
.

One should note that our Markov parameters are then all rationals.
In Table 6 we consider a selection of various Transcription Factors (TFs)

motifs. These TFs are typically involved in the regulation of gene expression.
The selected motifs range from simple patterns (e.g. CGCACCC) to highly complex
ones (e.g. GCGCN{15}GCGC). For each motif, the precomputations necessary for
the partial recursion (computation of λ) and the high-order lifting approach
(computation of G(y, z)) are indicated. As in Table 3 we see that the running
time increases with the motif complexity, eventually resulting in a memory
thrashing (MT) for the computation of the rational reconstruction. One should
note that time t2 is larger for these motifs than for the toy examples of the
previous section even when the fractional degrees are similar. This is explained
by the more complex nature of the model parameters (e.g. 1451956/8306051
for the TFs vs 1/4 for the toy-example).

In Table 7, we can see the computed values of P(N` = n) for our TFs motifs
and for various values of n. Due to the large value of `, the full recursion was
no longer tractable and there is hence no reference value for the probability of
interest. However, the results of both approaches are always the same (up to
the requested relative precision). For low complexity TFs, the high-lifting is
always much faster than the partial recursion when considering only the core
computations. However, we get the opposite results when we consider as well

11Homogeneous order m > 0 Markov model MLE uses the observed frequencies of (m+ 1)-
words. Taking into account the codons’ (3-letter words) frequency hence requires to consider
at least an order m = 2 Markov model.

26

AAA 4925908
AAC 1894781
AAG 2608606
AAT 3178544
ACA 2643624
ACC 1556255
ACG 346765
ACT 2095819
AGA 2893502
AGC 1890960
AGG 2394790
AGT 2097405
ATA 2563310
ATC 1743008
ATG 2414219
ATT 3176591

CAA 2467088
CAC 2029304
CAG 2749113
CAT 2412170
CCA 2494477
CCC 1800468
CCG 378469
CCT 2400823
CGA 303297
CGC 325579
CGG 377677
CGT 347404
CTA 1654612
CTC 2267140
CTG 2751827
CTT 2613317

GAA 2581990
GAC 1266423
GAG 2263506
GAT 1740603
GCA 1946916
GCC 1632319
GCG 323812
GCT 1891590
GGA 2085526
GGC 1630198
GGG 1794047
GGT 1554034
GTA 1452165
GTC 1267140
GTG 2031739
GTT 1900980

TAA 2632852
TAC 1451956
TAG 1655432
TAT 2565811
TCA 2572660
TCC 2085193
TCG 304911
TCT 2898664
TGA 2570179
TGC 1947900
TGG 2497293
TGT 2653181
TTA 2635963
TTC 2584156
TTG 2470768
TTT 4937918

Table 5: Tri-nucleotide frequencies in the human chromosome 10 (` =
131 624 728).

the pre-computation time (i.e.: obtaining G(y, z) for the high-order lifting, or
computing λ for the partial recursion). As for the toy-examples, we see that the
high-order lifting approach cannot cope with high complexity patterns since the
fractional reconstruction is not feasible for them.

5.3 Protein signatures

We consider here the complete human proteome build as the concatenation of
all human protein sequences over the 20 aminoacid alphabet (from the Uniprot
database12) resulting in a unique sequence of length ` = 9, 884, 385. We fit an or-
der 0 Markov model onto these data from the observed counts of all aminoacids:

N(A) = 691113, N(R) = 555875, N(N) = 357955, N(D) = 472303, N(C) = 227722,
N(E) = 698841, N(Q) = 469260, N(G) = 649800, N(H) = 258779, N(I) = 432849,
N(L) = 981769, N(K) = 567289, N(M) = 212203, N(F) = 363883, N(P) = 617242,
N(S) = 816977, N(T) = 529157, N(W) = 119979, N(Y) = 267663, N(V) = 593726.

As a consequence, our MLE parameters are expressed as rationals. For exam-
ple: P̂(Xi = W) = 119979/9884385.

We also consider a selection of 10 PROSITE13 signatures which correspond
to known functional motifs in proteins. In Table 8, the complexity of the consid-
ered motifs are studied along with the computational time to obtain λ (time t1)
or to obtain G(y, z) (time t2). Motifs are sorted by increasing complexities, from
Signature PILI CHAPERONE (whose minimal DFA has R = 46 states including
F = 1 final state) to Signature SUGAR TRANSPORT 2 (whose minimal DFA has
R = 1152 states including F = 40 final states). For both approaches, the run-
ning time for the precomputations is similar but, as for previous applications,

12http://www.uniprot.org
13http://expasy.org/prosite/

27

http://www.uniprot.org
http://expasy.org/prosite/

Transcription Factor R F 1− λ t1 frac. deg. t2
CGCACCC 21 1 1.04130× 10−5 0.13 18/19 3.24
TCCGTGGA 22 1 5.06531× 10−6 0.13 19/20 3.62
ACAACAAC 23 1 1.16022× 10−5 0.15 21/22 5.71

(A|C)TAAA(C|T)AA 25 2 1.41728× 10−4 0.18 20/20 4.36
(A|T){3}TTTGCTC(A|G) 30 2 1.05501× 10−5 0.20 23/23 5.50

A{24} 38 1 6.11979× 10−11 0.25 36/37 3.78
TA(A|T){4}TAG(A|C) 54 2 6.87736× 10−5 0.45 21/22 1.41

(C|T)CCN(C|T)TN(A|G){2}CCGN 66 4 3.21470× 10−6 0.63 24/25 9.57
GCGCN{6}GCGC 228 8 3.49649× 10−7 3.84 54/55 66.52
CGGN{8}CGG 419 13 8.20997× 10−6 10.12 81/82 283.61

TTGACAN{17}TATAAT 2068 34 1.29222× 10−7 34.91 173/173 6392.23
TTGACAN{16, 18}ATATAAT 2904 55 1.19636× 10−7 49.18 253/253 23727.28

GCGCN{15}GCGC 6158 225 3.49683× 10−7 202.48 1079/1080 MT

Table 6: Regular expression of Transcription Factors (TFs) defined over the
DNA alphabet A = {A, C, G, T} using the IUPAC notation N = (A|C|G|T). R
(resp. F) is the number of states (resp. final states) of the minimal order 2
DFA associated to the TFs. λ is the largest eigenvalue of P, and t1 the time to
compute λ using the power method. “frac. deg.” corresponds to the fractional
degrees of G(y, z), and t2 is the time to compute G(y, z) using Algorithm 2.

we observe a steeper increase for the fractional reconstruction when considering
high complexity motifs.

In Table 9 we compute P(N` = n) for all considered PROSITE signatures
and a range of values for n. For each combination, both the partial recursion
and the high-order lifting are performed and the two methods agree perfectly
in their results. As for the TFs, the fast Taylor expansion (time t4) is much
faster than the recursion part (time t3) but the precomputation of G(y, z) (time
t4) has a high cost, especially for the signatures of high complexity, which is
consistent with previous observations.

6 Conclusion

We have developed two efficient approaches to obtain the exact distribution of a
pattern in a long sequence. Table 10 recalls the different obtained complexities.

The first approach uses a partial recursion and is suitable even for high
complexity patterns. Unfortunately, its quadratic complexity in the observed
number of occurrence n makes it not recommended for large values of n.

The second approach has two steps: first obtaining G(y, z) through fraction
reconstruction of the series

∑
G`(y)z` and then performing fast Taylor expan-

sion using high-order lifting. On the one hand, in all examples, just computing
the series appears to be the bottleneck, especially for high complexity patterns.
On the other hand, the fast Taylor expansion is usually very fast, even if the
running time increases with the fractional degrees. Moreover, once the gener-
ating function has been obtained, the fast liftings can reveal the distribution of

28

Transcription Factor n α P(N` = n) t3 +t1 t4 +t2
CGCACCC 10 117 3.64365× 10−571 0.19 0.32 0.41 3.65

20 204 1.27159× 10−551 0.60 0.73 1.05 4.32
40 373 2.07574× 10−518 2.10 2.23 3.17 6.44

TCCGTGGA 10 131 1.33747× 10−268 0.20 0.33 0.01 3.63
20 225 3.46367× 10−252 0.63 0.76 0.03 3.65
40 409 3.11336× 10−225 2.17 2.30 0.05 3.70

AACAACAAC 10 142 3.86490× 10−170 0.25 0.40 0.02 5.73
20 258 1.22856× 10−155 0.88 1.03 0.03 5.76
40 492 1.69964× 10−132 3.24 3.39 0.06 5.79

(A|C)TAAA(C|T)AA 10 136 6.76399× 10−8067 0.26 0.44 0.53 4.89
20 240 4.79070× 10−8036 0.87 1.05 1.35 5.71
40 449 3.22178× 10−7980 3.14 3.32 4.07 8.44

(A|T){3}TTTGCTC(A|G) 10 150 6.03263× 10−579 0.30 0.50 0.63 6.13
20 267 2.40165× 10−559 0.99 1.19 1.59 7.12
40 500 5.10153× 10−526 3.58 3.78 4.87 10.42

A{24} 5 171 1.16314× 10−4 0.31 0.56 0.02 8.73
10 310 1.09217× 10−6 1.01 1.26 0.02 17.75
20 589 9.62071× 10−11 3.68 3.93 0.04 40.27

TA(A|T){4}TAG(A|C) 5 93 1.60427× 10−3914 0.21 0.66 0.12 3.20
10 148 3.23597× 10−3899 0.54 0.99 0.27 5.49
20 256 1.79579× 10−3871 1.69 2.14 0.76 7.40

(C|T)CCN(C|T)TN(A|G){2}CCGN 5 150 1.94195× 10−173 0.43 1.06 0.02 9.59
10 215 8.71218× 10−165 1.00 1.63 0.02 8.60
20 342 2.39167× 10−150 3.01 3.64 0.05 8.63

GCGCN{6}GCGC 1 65 4.73516× 10−19 0.24 4.08 0.62 67.09
2 92 1.08880× 10−17 0.50 4.34 0.87 98.62
4 138 1.91912× 10−15 1.22 5.06 1.49 155.99

CGGN{8}CGG 1 82 5.21188× 10−467 0.59 10.71 1.47 284.93
2 114 2.80818× 10−464 1.17 11.29 1.79 403.75
4 169 2.71751× 10−459 2.74 12.86 3.12 651.20

TTGACAN{17}TATAAT 1 92 6.97988× 10−7 3.06 37.97 2.49 6394.73
2 137 5.93598× 10−6 6.72 41.63 3.78 9378.03
4 199 1.43106× 10−4 15.23 50.14 6.63 15008.84

TTGACAN{16, 18}ATATAAT 1 96 2.28201× 10−6 4.86 54.04 5.30 23732.58
2 129 1.79676× 10−5 9.38 58.56 7.42 34949.45
4 202 3.71288× 10−4 23.16 72.34 15.65 56832.04

GCGCN{15}GCGC 1 119 4.71467× 10−19 12.62 215.10 - MT
2 173 1.08420× 10−17 27.15 229.63 - MT
4 255 1.91136× 10−15 63.45 265.93 - MT

Table 7: P(N` = n), with ` = 131 624 728, for the TFs motifs over the alphabet
A = {A, C, G, T} using an order 2 homogeneous Markov model. α is the rank
of the partial recursion (depends only on n), t3 is the running time to perform
the computation using the partial recursion (“+t1” gives the total running time
t1 + t3), t4 is the running time to perform the computation using the high-order
lifting (“+t2” give the total running time t2 + t4).

29

PROSITE signature AC R F 1− λ t1 degrees t2
PILI CHAPERONE PS00635 46 1 1.7× 10−10 0.63 15/18 0.27
EFACTOR GTP PS00301 52 4 1.0× 10−8 0.74 14/16 0.18
ALDEHYDE DEHYDR CYS PS00070 67 17 1.1× 10−6 0.91 11/12 0.21
SIGMA54 INTERACT 2 PS00676 85 1 8.8× 10−10 1.08 0/16 0.22
ADH ZINC PS00059 87 8 2.2× 10−7 1.40 37/41 2.07
SUGAR TRANSPORT 1 PS00216 188 54 6.7× 10−7 3.48 17/18 1.05
THIOLASE 1 PS00098 254 6 2.6× 10−15 5.21 37/38 1.76
FGGY KINASES 2 PS00445 463 6 2.2× 10−7 11.52 26/30 2.39
PTS EIIA TYPE 2 HIS PS00372 756 46 1.3× 10−9 17.47 77/80 18.60
SUGAR TRANSPORT 2 PS00217 1152 40 8.6× 10−7 36.95 149/151 68.36

Table 8: Characteristics of some PROSITE signatures defined over the
aminoacid alphabet. AC is the accession number in the PROSITE database, R
(resp. F) is the number of states (resp. final states) of the minimal order 2 DFA
associated to the signatures. λ is the largest eigenvalue of P, and t1 the time to
compute λ using the power method. “frac. deg.” corresponds to the fractional
degrees of G(y, z), and t2 is the time to compute G(y, z) using Algorithm 2.

any pattern count at a very low cost.
Future work will include improvement of the precomputation of G(y, z), for

instance reconstructing the rational fraction from approximated evaluations of
the series. However, an exact reconstruction on approximate values could yield
a reasonable model, but only with a generic behavior. That is, d, the obtained
degree, would in general be equal to R, the size of the input matrices. On the
contrary, in the examples, this degree is much lower in practice. One should
also note that the distribution of the number of motif occurrences is known to
be very sensitive to the parameters (the transition probabilities of the Markov
chain) and that any approximation performed on these parameter might have
large and uncontrolled consequences [Nuel, 2006c].

Another solution could be to use regularization methods or the approximate
gcd-like approaches of e.g. Kaltofen and Yang [2007] for the pre-computation
of G(y, z). This could yield significant improvements both in terms of memory
and computational time if the small degrees were preserved.

Concerning the partial recursion, it is clear that the need of high precision
floating point computations to avoid numerical convergence instability is a major
issue and that a careful investigation of the overall stability of the algorithm in
floating point arithmetic is a top priority for further investigations.

Overall, the high-order lifting approach is very efficient for low or median
complexity motifs, but cannot deal efficiently with the highly complex motifs. In
our examples, we dealt with two real applications (TFs in Human Chromosome
10, and PROSITE signatures in the Human complete proteome) which demon-
strate the practical interest of our approaches. Finally, dealing with fully exact
computations for frequent (large n) and high complexity (large R) motifs yet

30

PROSITE signature n α P(N` = n) t3 +t1 t4 +t2
PILI CHAPERONE 5 125 1.20635× 10−16 0.98 1.16 0.01 0.17

10 221 5.78491× 10−35 3.17 3.80 0.01 0.28
20 413 1.81452× 10−74 11.20 11.83 0.01 0.69

EFACTOR GTP 5 114 7.25588× 10−8 1.07 0.84 0.01 0.18
10 196 2.30705× 10−17 3.41 0.95 0.01 0.32
20 364 3.18090× 10−39 12.23 1.28 0.01 0.75

ALDEHYDE DEHYDR CYS 5 88 1.85592× 10−2 1.13 2.04 0.01 0.20
10 151 1.15181× 10−1 3.59 4.50 0.01 0.30
20 270 6.05053× 10−3 12.27 13.18 0.01 0.60

SIGMA54 INTERACT 2 5 106 4.09432× 10−13 1.45 2.53 0.01 0.23
10 189 6.70971× 10−28 4.68 5.76 0.01 0.29
20 350 2.45724× 10−60 16.17 17.25 0.01 0.40

ADH ZINC 5 116 4.51132× 10−2 1.91 3.31 0.01 2.08
10 196 6.99469× 10−5 5.98 7.38 0.02 3.80
20 352 2.29397× 10−13 20.52 21.92 0.04 7.57

SUGAR TRANSPORT 1 1 60 6.06925× 10−3 0.65 4.13 0.05 1.10
2 75 1.64759× 10−2 1.29 4.77 0.08 1.51
4 110 5.41084× 10−2 3.30 6.78 0.12 2.29

THIOLASE 1 1 85 2.54343× 10−8 1.23 6.44 0.01 1.77
2 127 1.61364× 10−15 2.85 8.06 0.01 2.04
4 207 6.25151× 10−30 7.96 13.17 0.01 2.38

FGGY KINASES 2 1 73 2.43018× 10−1 2.08 13.60 0.01 2.40
2 97 2.68005× 10−1 4.21 15.73 0.01 3.32
4 142 1.08650× 10−1 10.27 19.48 0.01 4.54

PTS EIIA TYPE 2 HIS 1 76 1.23843× 10−2 3.41 20.88 0.41 19.02
2 105 7.76535× 10−5 7.32 24.79 0.61 27.96
4 163 1.0177× 10−9 19.18 36.65 1.08 44.72

SUGAR TRANSPORT 2 1 96 1.71124× 10−3 6.78 43.73 1.37 69.73
2 124 7.28305× 10−3 13.51 50.46 2.01 103.56
4 177 4.39742× 10−2 32.81 69.76 3.57 172.62

Table 9: P(N` = n), with ` = 9 884 385, for the PROSITE signatures over the
aminoacid alphabet an order 0 homogeneous Markov model. α is the rank of
the partial recursion (depends only on n), t3 is the running time to perform
the computation using the partial recursion (“+t1” gives the total running time
t1 + t3), t4 is the running time to perform the computation using the high-order
lifting (“+t2” give the total running time t2 + t4).

31

Approach Memory Time

A
p

p
ro

x
im

.
Full recursion O (nR) O (n|A|R`)

Ribeca and Raineri [2008] O
(
nR2 log(`)

)
O

(
n2R3 log(`)

)
Partial recursion O (nR) O

(
n4|A|R log(`)/ log(ν−1)

)
E

x
a
ct Nicodème et al. [2002] O

(
n3R4 log(R)

)
O

(
R6 log(R) + n5 log(`)

)
High-order O

(
nd2R log(R)

)
O

(
nd2R log(R) + (nd)1+o(1) log(`)

)
Table 10: Complexities of the different approaches to compute P(N` = n). R is
the size of the automaton, |A| is the size of the alphabet, d < R is the degree
of the rational fraction and 0 < ν < 1 is the magnitude of the second largest
eigenvalue of P̃.

remains an open problem. At the present time, for such challenging problems, it
is likely that one can only rely on approximations like the Edgeworth expansions
or the Bahadur-Rao approximations [see Nuel, 2011, for more details].

References

A.V. Aho and M.J. Corasick. Efficient string matching: an aid to bibliographic
search. Communications of the ACM, 18(6):333–340, 1975.

C. Allauzen and M. Mohri. A unified construction of the glushkov, follow, and
antimirov automata. Mathematical Foundations of Computer Science 2006,
pages 110–121, 2006.

D. L. Antzoulakos. Waiting times for patterns in a sequence of multistate trials.
J. Appl. Prob., 38:508–518, 2001.

E. Beaudoing, S. Freier, J.R. Wyatt, J.-M. Claverie, and D. Gautheret. Patterns
of variant polyadenylation signal usage in human genes. Genome Res., 10(7):
1001–1010, 2000.

V. Boeva, J. Clément, M. Régnier, and M. Vandenbogaert. Assessing the signif-
icance of sets of words. In Combinatorial Pattern Matching 05, Lecture Notes
in Computer Science, vol. 3537, pages 358–370. Springer-Verlag, 2005.

V. Boeva, J. Clement, M. Regnier, M.A. Roytberg, and V.J. Makeev. Exact
p-value calculation for heterotypic clusters of regulatory motifs and its appli-
cation in computational annotation of cis-regulatory modules. Algorithms for
Molecular Biology, 2:13, 2007.

A. Brazma, I. Jonassen, J. Vilo, and E Ukkonen. Predicting gene regulatory
elements in silico on a genomic scale. Genome Res., 8(11):1202–1215, 1998.

Y.-M. Chang. Distribution of waiting time until the rth occurrence of a com-
pound pattern. Statistics and Probability Letters, 75(1):29–38, 2005.

32

T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduction to Algorithms,
chapter 34, pages 853–885. MIT Press, 1990.

Cowan. Expected frequencies of DNA patterns using Whittle’s formula. J. Appl.
Prob., 28:886–892, 1991.

M. Crochemore and C. Hancart. Handbook of Formal Languages, Volume 2,
Linear Modeling: Background and Application, chapter Automata for Match-
ing Patterns, pages 399–462. Springer-Verlag, Berlin, 1997.

M. Crochemore and V. Stefanov. Waiting time and complexity for matching
patterns with automata. Info. Proc. Letters, 87(3):119–125, 2003.

A. Denise, M. Régnier, and M. Vandenbogaert. Assessing the statistical signifi-
cance of overrepresented oligonucleotides. Lecture Notes in Computer Science,
2149:85–97, 2001.

M. El Karoui, V. Biaudet, S. Schbath, and A. Gruss. Characteristics of chi
distribution on different bacterial genomes. Res. Microbiol., 150:579–587,
1999.

T. Erhardsson. Compound Poisson approximation for counts of rare patterns
in Markov chains and extreme sojourns in birth-death chains. Ann. Appl.
Probab., 10(2):573–591, 2000.

Charles M. Fiduccia. An efficient formula for linear recurrences. SIAM Journal
on Computing, 14(1):106–112, February 1985.

M. C. Frith, J. L. Spouge, U. Hansen, and Z. Weng. Statistical significance
of clusters of motifs represented by position specific scoring matrices in nu-
cleotide sequences. Nucl. Acids. Res., 30(14):3214–3224, 2002.

J. C. Fu. Distribution theory of runs and patterns associated with a sequence
of multi-state trials. Statistica Sinica, 6(4):957–974, 1996.

M. X. Geske, A. P. Godbole, A. A. Schaffner, A. M Skrolnick, and G. L. Wall-
strom. Compound Poisson approximations for word patterns under markovian
hypotheses. J. Appl. Probab., 32:877–892, 1995.

A. P. Godbole. Poissons approximations for runs and patterns of rare events.
Adv. Appl. Prob., 23, 1991.

S. Hampson, D. Kibler, and P. Baldi. Distribution patterns of over-represented
k-mers in non-coding yeast DNA. Bioinformatics, 18(4):513–528, 2002.

J. Hopcroft. An n log n algorithm for minimizing states in a finite automaton.
Reproduction, pages 189–196, 1971.

J. E. Hopcroft, R. Motwani, and J. D. Ullman. Introduction to the automata
theory, languages, and computation, 2d ed. ACM Press, New York, 2001.

33

Erich Kaltofen and Zhengfeng Yang. On exact and approximate interpolation of
sparse rational functions. In Christopher W. Brown, editor, Proceedings of the
2007 ACM International Symposium on Symbolic and Algebraic Computation,
Waterloo, Canada, pages 203–210. ACM Press, New York, July 29 – August
1 2007.

S. Karlin, C. Burge, and A.M. Campbell. Statistical analyses of counts and
distributions of restriction sites in DNA sequences. Nucl. Acids. Res., 20(6):
1363–1370, 1992.

J. Kleffe and M. Borodovski. First and second moments of counts of words
in random texts generated by Markov chains. Bioinformatics, 8(5):433–441,
1997.

Donald E. Knuth. Seminumerical Algorithms, volume 2 of The Art of Computer
Programming. Addison-Wesley, Reading, MA, USA, 2nd edition, 1997. ISBN
0-201-89684-2.

V. Le Maout. Regular expressions at their best: a case for rational design.
Implementation and Application of Automata, pages 310–320, 2011.

Gavin C. Kanga Leonardo Mariño-Ramı́rez, John L. Spouge and David Lands-
man. Statistical analysis of over-represented words in human promoter se-
quences. Nuc. Acids Res., 32(3):949–958, 2004.

M. E. Lladser. Mininal Markov chain embeddings of pattern problems. In
Information Theory and Applications Workshop, pages 251–255. IEEE, 2007.
http://ita.ucsd.edu/workshop/07/files/paper/paper_505.pdf.

M. Lothaire, editor. Applied Combinatorics on Words. Cambridge University
Press, Cambridge, 2005.

Pierre Nicodème, Bruno Salvy, and Philippe Flajolet. Motif statistics. Theoret-
ical Computer Science, 287(2):593–617, September 2002. ISSN 0304-3975.

G. Nuel. Ld-spatt: Large deviations statistics for patterns on Markov chains.
J. Comp. Biol., 11(6):1023–1033, 2004.

G. Nuel. Effective p-value computations using Finite Markov Chain Imbedding
(FMCI): application to local score and to pattern statistics. Algorithms for
Molecular Biology, 1(1):5, 2006a.

G. Nuel. Numerical solutions for patterns statistics on Markov chains. Stat.
App. in Genet. and Mol. Biol., 5(1):26, 2006b.

G. Nuel. Pattern statistics on markov chains and sensitivity to parameter esti-
mation. Algorithms for Molecular Biology, 1(1):17, 2006c.

G. Nuel. Pattern Markov chains: optimal Markov chain embedding through
deterministic finite automata. J. of Applied Prob., 45(1):226–243, 2008.

34

http://ita.ucsd.edu/workshop/07/files/paper/paper_505.pdf

G. Nuel. Bioinformatics: Trends and Methodologies, chap-
ter Significance Score of Motifs in Biological Sequences. In-
tech, 2011. ISBN: 978-953-307-282-1. Available at http://www.

intechopen.com/books/bioinformatics-trends-and-methodologies/

significance-score-of-motifs-in-biological-sequences.

G. Nuel, L. Regad, J. Martin, and A.-C. Camproux. Exact distribution of a pat-
tern in a set of random sequences generated by a markov source: applications
to biological data. Algorithms for Molecular Biology, 5, 2010.

P.A. Pevzner, M.Y. Borodovski, and A.A. Mironov. Linguistic of nucleotide
sequences: The significance of deviation from mean statistical characteristics
and prediction of frequencies of occurrence of words. J. Biomol. Struct. Dyn.,
6:1013–1026, 1989.

B. Prum, F. Rodolphe, and E. de Turckheim. Finding words with unexpected
frequencies in DNA sequences. J. R. Statist. Soc. B, 11:190–192, 1995.

M. Reignier. A unified approach to word occurrences probabilities. Discrete
Applied Mathematics, 104(1):259–280, 2000.

G. Reinert and S. Schbath. Compound Poisson and Poisson process approxima-
tions for occurrences of multiple words in markov chains. J. of Comp. Biol.,
5:223–254, 1999.

P. Ribeca and E. Raineri. Faster exact Markovian probability functions for
motif occurrences: a DFA-only approach. Bioinformatics, 24(24):2839–2848,
2008.

Bruno Salvy. Solutions rationnelles de systèmes linéaires à coefficients polyno-
miaux. In Algorithmes en Calcul Formel et en Automatique, chapter 7. 2009.
http://algo.inria.fr/chyzak/mpri/poly-20091201.pdf.

V. Stefanov and A. G. Pakes. Explicit distributional results in pattern formation.
Ann. Appl. Probab., 7:666–678, 1997.

V. T. Stefanov and W. Szpankowski. Waiting Time Distributions for Pattern
Occurrence in a Constrained Sequence. Discrete Mathematics and Theoretical
Computer Science, 9(1):305–320, 2007.

Arne Storjohann. High-order lifting and integrality certification. Journal of
Symbolic Computation, 36(3-4):613–648, 2003.

J. van Helden, B. André, and J. Collado-Vides. Extracting regulatory sites
from the upstream region of yeast genes by computational analysis of oligonu-
cleotide frequencies. J. Mol. Biol., 281(5):827–842, 1998.

35

http://www.intechopen.com/books/bioinformatics-trends-and-methodologies/significance-score-of-motifs-in-biological-sequences
http://www.intechopen.com/books/bioinformatics-trends-and-methodologies/significance-score-of-motifs-in-biological-sequences
http://www.intechopen.com/books/bioinformatics-trends-and-methodologies/significance-score-of-motifs-in-biological-sequences
http://algo.inria.fr/chyzak/mpri/poly-20091201.pdf

	Introduction
	DFA and optimal Markov chain embedding
	Automata and languages
	Connection with patterns
	Markov chain embedding

	Partial recursion
	High-order lifting
	Rational reconstruction
	Early termination strategy for the determination of the fraction degrees
	High-order lifting for polynomial fraction development
	Fiduccia's algorithm for linear recurring sequences
	Single coefficient recovery
	Cluster of coefficients recovery
	High-Order and Fiduccia algorithm comparison

	Bivariate lifting
	Overall complexity

	Applications
	Toy-examples
	Transcription factors in Human Chromosome 10
	Protein signatures

	Conclusion

