443 research outputs found

    GraphX: Unifying Data-Parallel and Graph-Parallel Analytics

    Full text link
    From social networks to language modeling, the growing scale and importance of graph data has driven the development of numerous new graph-parallel systems (e.g., Pregel, GraphLab). By restricting the computation that can be expressed and introducing new techniques to partition and distribute the graph, these systems can efficiently execute iterative graph algorithms orders of magnitude faster than more general data-parallel systems. However, the same restrictions that enable the performance gains also make it difficult to express many of the important stages in a typical graph-analytics pipeline: constructing the graph, modifying its structure, or expressing computation that spans multiple graphs. As a consequence, existing graph analytics pipelines compose graph-parallel and data-parallel systems using external storage systems, leading to extensive data movement and complicated programming model. To address these challenges we introduce GraphX, a distributed graph computation framework that unifies graph-parallel and data-parallel computation. GraphX provides a small, core set of graph-parallel operators expressive enough to implement the Pregel and PowerGraph abstractions, yet simple enough to be cast in relational algebra. GraphX uses a collection of query optimization techniques such as automatic join rewrites to efficiently implement these graph-parallel operators. We evaluate GraphX on real-world graphs and workloads and demonstrate that GraphX achieves comparable performance as specialized graph computation systems, while outperforming them in end-to-end graph pipelines. Moreover, GraphX achieves a balance between expressiveness, performance, and ease of use

    A Nine Month Progress Report on an Investigation into Mechanisms for Improving Triple Store Performance

    No full text
    This report considers the requirement for fast, efficient, and scalable triple stores as part of the effort to produce the Semantic Web. It summarises relevant information in the major background field of Database Management Systems (DBMS), and provides an overview of the techniques currently in use amongst the triple store community. The report concludes that for individuals and organisations to be willing to provide large amounts of information as openly-accessible nodes on the Semantic Web, storage and querying of the data must be cheaper and faster than it is currently. Experiences from the DBMS field can be used to maximise triple store performance, and suggestions are provided for lines of investigation in areas of storage, indexing, and query optimisation. Finally, work packages are provided describing expected timetables for further study of these topics

    Query Optimization Techniques for OLAP Applications: An ORACLE versus MS-SQL Server Comparative Study

    Get PDF
    Query optimization in OLAP applications is a novel problem. A lot of research was introduced in the area of optimizing query performance, however great deal of research focused on OLTP applications rather than OLAP. In order to reach the output results OLAP queries extensively asks the database, inefficient processing of those queries will have its negative impact on the performance and may make the results useless. Techniques for optimizing queries include memory caching, indexing, hardware solutions, and physical database storage. Oracle and MS SQL Server both offer OLAP optimization techniques, the paper will review both packages’ approaches and then proposes a query optimization strategy for OLAP applications. The proposed strategy is based on use of the following four ingredients: 1- intermediate queries; 2- indexes both BTrees and Bitmaps; 3- memory cache (for the syntax of the query) and secondary storage cache (for the result data set); and 4- the physical database storage (i.e. binary storage model) accompanied by its hardware solution

    Load-balanced Range Query Workload Partitioning for Compressed Spatial Hierarchical Bitmap (cSHB) Indexes

    Get PDF
    abstract: The spatial databases are used to store geometric objects such as points, lines, polygons. Querying such complex spatial objects becomes a challenging task. Index structures are used to improve the lookup performance of the stored objects in the databases, but traditional index structures cannot perform well in case of spatial databases. A significant amount of research is made to ingest, index and query the spatial objects based on different types of spatial queries, such as range, nearest neighbor, and join queries. Compressed Spatial Bitmap Index (cSHB) structure is one such example of indexing and querying approach that supports spatial range query workloads (set of queries). cSHB indexes and many other approaches lack parallel computation. The massive amount of spatial data requires a lot of computation and traditional methods are insufficient to address these issues. Other existing parallel processing approaches lack in load-balancing of parallel tasks which leads to resource overloading bottlenecks. In this thesis, I propose novel spatial partitioning techniques, Max Containment Clustering and Max Containment Clustering with Separation, to create load-balanced partitions of a range query workload. Each partition takes a similar amount of time to process the spatial queries and reduces the response latency by minimizing the disk access cost and optimizing the bitmap operations. The partitions created are processed in parallel using cSHB indexes. The proposed techniques utilize the block-based organization of bitmaps in the cSHB index and improve the performance of the cSHB index for processing a range query workload.Dissertation/ThesisMasters Thesis Computer Science 201

    CubiST++: Evaluating Ad-Hoc CUBE Queries Using Statistics Trees

    Get PDF
    We report on a new, efficient encoding for the data cube, which results in a drastic speed-up of OLAP queries that aggregate along any combination of dimensions over numerical and categorical attributes. We are focusing on a class of queries called cube queries, which return aggregated values rather than sets of tuples. Our approach, termed CubiST++ (Cubing with Statistics Trees Plus Families), represents a drastic departure from existing relational (ROLAP) and multi-dimensional (MOLAP) approaches in that it does not use the view lattice to compute and materialize new views from existing views in some heuristic fashion. Instead, CubiST++ encodes all possible aggregate views in the leaves of a new data structure called statistics tree (ST) during a one-time scan of the detailed data. In order to optimize the queries involving constraints on hierarchy levels of the underlying dimensions, we select and materialize a family of candidate trees, which represent superviews over the different hierarchical levels of the dimensions. Given a query, our query evaluation algorithm selects the smallest tree in the family, which can provide the answer. Extensive evaluations of our prototype implementation have demonstrated its superior run-time performance and scalability when compared with existing MOLAP and ROLAP systems

    Exploiting Data Skew for Improved Query Performance

    Full text link
    Analytic queries enable sophisticated large-scale data analysis within many commercial, scientific and medical domains today. Data skew is a ubiquitous feature of these real-world domains. In a retail database, some products are typically much more popular than others. In a text database, word frequencies follow a Zipf distribution with a small number of very common words, and a long tail of infrequent words. In a geographic database, some regions have much higher populations (and data measurements) than others. Current systems do not make the most of caches for exploiting skew. In particular, a whole cache line may remain cache resident even though only a small part of the cache line corresponds to a popular data item. In this paper, we propose a novel index structure for repositioning data items to concentrate popular items into the same cache lines. The net result is better spatial locality, and better utilization of limited cache resources. We develop a theoretical model for analyzing the cache behavior, and implement database operators that are efficient in the presence of skew. Our experiments on real and synthetic data show that exploiting skew can significantly improve in-memory query performance. In some cases, our techniques can speed up queries by over an order of magnitude
    • …
    corecore