14,300 research outputs found

    Hashing for Similarity Search: A Survey

    Full text link
    Similarity search (nearest neighbor search) is a problem of pursuing the data items whose distances to a query item are the smallest from a large database. Various methods have been developed to address this problem, and recently a lot of efforts have been devoted to approximate search. In this paper, we present a survey on one of the main solutions, hashing, which has been widely studied since the pioneering work locality sensitive hashing. We divide the hashing algorithms two main categories: locality sensitive hashing, which designs hash functions without exploring the data distribution and learning to hash, which learns hash functions according the data distribution, and review them from various aspects, including hash function design and distance measure and search scheme in the hash coding space

    Fast and Lean Immutable Multi-Maps on the JVM based on Heterogeneous Hash-Array Mapped Tries

    Get PDF
    An immutable multi-map is a many-to-many thread-friendly map data structure with expected fast insert and lookup operations. This data structure is used for applications processing graphs or many-to-many relations as applied in static analysis of object-oriented systems. When processing such big data sets the memory overhead of the data structure encoding itself is a memory usage bottleneck. Motivated by reuse and type-safety, libraries for Java, Scala and Clojure typically implement immutable multi-maps by nesting sets as the values with the keys of a trie map. Like this, based on our measurements the expected byte overhead for a sparse multi-map per stored entry adds up to around 65B, which renders it unfeasible to compute with effectively on the JVM. In this paper we propose a general framework for Hash-Array Mapped Tries on the JVM which can store type-heterogeneous keys and values: a Heterogeneous Hash-Array Mapped Trie (HHAMT). Among other applications, this allows for a highly efficient multi-map encoding by (a) not reserving space for empty value sets and (b) inlining the values of singleton sets while maintaining a (c) type-safe API. We detail the necessary encoding and optimizations to mitigate the overhead of storing and retrieving heterogeneous data in a hash-trie. Furthermore, we evaluate HHAMT specifically for the application to multi-maps, comparing them to state-of-the-art encodings of multi-maps in Java, Scala and Clojure. We isolate key differences using microbenchmarks and validate the resulting conclusions on a real world case in static analysis. The new encoding brings the per key-value storage overhead down to 30B: a 2x improvement. With additional inlining of primitive values it reaches a 4x improvement

    Comparison of Different Parallel Implementations of the 2+1-Dimensional KPZ Model and the 3-Dimensional KMC Model

    Full text link
    We show that efficient simulations of the Kardar-Parisi-Zhang interface growth in 2 + 1 dimensions and of the 3-dimensional Kinetic Monte Carlo of thermally activated diffusion can be realized both on GPUs and modern CPUs. In this article we present results of different implementations on GPUs using CUDA and OpenCL and also on CPUs using OpenCL and MPI. We investigate the runtime and scaling behavior on different architectures to find optimal solutions for solving current simulation problems in the field of statistical physics and materials science.Comment: 14 pages, 8 figures, to be published in a forthcoming EPJST special issue on "Computer simulations on GPU

    Codes for Asymmetric Limited-Magnitude Errors With Application to Multilevel Flash Memories

    Get PDF
    Several physical effects that limit the reliability and performance of multilevel flash memories induce errors that have low magnitudes and are dominantly asymmetric. This paper studies block codes for asymmetric limited-magnitude errors over q-ary channels. We propose code constructions and bounds for such channels when the number of errors is bounded by t and the error magnitudes are bounded by ℓ. The constructions utilize known codes for symmetric errors, over small alphabets, to protect large-alphabet symbols from asymmetric limited-magnitude errors. The encoding and decoding of these codes are performed over the small alphabet whose size depends only on the maximum error magnitude and is independent of the alphabet size of the outer code. Moreover, the size of the codes is shown to exceed the sizes of known codes (for related error models), and asymptotic rate-optimality results are proved. Extensions of the construction are proposed to accommodate variations on the error model and to include systematic codes as a benefit to practical implementation

    A programmable microsystem using system-on-chip for real-time biotelemetry

    Get PDF
    A telemetry microsystem, including multiple sensors, integrated instrumentation and a wireless interface has been implemented. We have employed a methodology akin to that for System-on-Chip microelectronics to design an integrated circuit instrument containing several "intellectual property" blocks that will enable convenient reuse of modules in future projects. The present system was optimized for low-power and included mixed-signal sensor circuits, a programmable digital system, a feedback clock control loop and RF circuits integrated on a 5 mm × 5 mm silicon chip using a 0.6 μm, 3.3 V CMOS process. Undesirable signal coupling between circuit components has been investigated and current injection into sensitive instrumentation nodes was minimized by careful floor-planning. The chip, the sensors, a magnetic induction-based transmitter and two silver oxide cells were packaged into a 36 mm × 12 mm capsule format. A base station was built in order to retrieve the data from the microsystem in real-time. The base station was designed to be adaptive and timing tolerant since the microsystem design was simplified to reduce power consumption and size. The telemetry system was found to have a packet error rate of 10<sup>-</sup><sup>3</sup> using an asynchronous simplex link. Trials in animal carcasses were carried out to show that the transmitter was as effective as a conventional RF device whilst consuming less power
    • …
    corecore