6 research outputs found

    Autofocus and Back-Projection in Synthetic Aperture Radar Imaging.

    Full text link
    Spotlight-mode Synthetic Aperture Radar (SAR) imaging has received considerable attention due to its ability to produce high-resolution images of scene reflectivity. One of the main challenges in successful image recovery is the problem of defocusing, which occurs due to inaccuracies in the estimated round-trip delays of the transmitted radar pulses. The problem is most widely studied for far-field imaging scenarios with a small range of look angles since the problem formulation can be significantly simplified under the assumptions of planar wavefronts and one-dimensional defocusing. In practice, however, these assumptions are frequently violated. MultiChannel Autofocus (MCA) is a subspace-based approach to the defocusing problem that was originally proposed for far-field imaging, with a small range of look angles. A key motivation behind MCA is the observation that there exists a low-return region within the recovered image, due to the weak illumination near the edges of the antenna footprint. The strength of the MCA formulation is that it can be easily extended to more realistic scenarios with polar-format data, spherical wavefronts, and arbitrary terrain, due to its flexible linear-algebraic framework. The main aim of this thesis is to devise a more broadly effective autofocus approach by adopting MCA to the aforementioned scenarios. By forming the solution space in a domain where the defocusing effect is truly one-dimensional, we show that drastically improved restorations can be obtained for applications with small to fairly wide ranges of look angles. When the terrain topography is known, we utilize the versatile backprojection-based imaging methods in the model formulations for MCA to accurately account for the underlying geometry. The proposed extended MCA shows reductions in RMSE of up to 50% when the underlying terrain is highly elevated. We also analyze the effects of the filtering step, the amount of wave curvature, the shape of the terrain, and the flight path of the radar, on the reconstructed image via backprojection. Finally, we discuss the selection of low-return constraints and the importance of using terrain elevation within MCA formulation.PHDElectrical Engineering: SystemsUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/135868/1/zzon_1.pd

    Synthetic aperture source localization

    Get PDF
    2018 Summer.Includes bibliographical references.The detection and localization of sources of electromagnetic (EM) radiation has many applications in both civilian and defense communities. The goal of source localization is to identify the geographic position of an emitter of some radiation from measurements of the elds that the source produces. Although the problem has been studied intensively for many decades much work remains to be done. Many state-of-the-art methods require large numbers of sensors and perform poorly or require additional sensors when target emitters transmit highly correlated waveforms. Some methods also require a preprocessing step which attempts to identify regions of the data which come from emitters in the scene before processing the localization algorithm. Additionally, it has been proven that pure Angle of Arrival (AOA) techniques based on current methods are always suboptimal when multiple emitters are present. We present a new source localization technique which employs a cross correlation measure of the Time Dierence of Arrival (TDOA) for signals recorded at two separate platforms, at least one of which is in motion. This data is then backprojected through a Synthetic Aperture Radar (SAR)-like process to form an image of the locations of the emitters in a target scene. This method has the advantage of not requiring any a priori knowledge of the number of emitters in the scene. Nor does it rest on an ability to identify regions of the data which come from individual emitters, though if this capability is present it may improve image quality. Additionally we demonstrate that this method is capable of localizing emitters which transmit highly correlated waveforms, though complications arise when several such emitters are present in the scene. We discuss these complications and strategies to mitigate them. Finally we conclude with an overview of our method's performance for various levels of additive noise and lay out a path for advancing study of this new method through future work

    Bistatic Synthetic Aperture Radar Imaging for Arbitrary Flight Trajectories and Non-flat Topography

    No full text
    corecore