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ABSTRACT

SYNTHETIC APERTURE SOURCE LOCALIZATION

The detection and localization of sources of electromagnetic (EM) radiation has many appli-

cations in both civilian and defense communities. The goal of source localization is to identify

the geographic position of an emitter of some radiation from measurements of the fields that the

source produces. Although the problem has been studied intensively for many decades much work

remains to be done.

Many state-of-the-art methods require large numbers of sensors and perform poorly or require

additional sensors when target emitters transmit highly correlated waveforms. Some methods also

require a preprocessing step which attempts to identify regions of the data which come from emit-

ters in the scene before processing the localization algorithm. Additionally, it has been proven that

pure Angle of Arrival (AOA) techniques based on current methods are always suboptimal when

multiple emitters are present. [25]

We present a new source localization technique which employs a cross correlation measure of

the Time Difference of Arrival (TDOA) for signals recorded at two separate platforms, at least

one of which is in motion. This data is then backprojected through a Synthetic Aperture Radar

(SAR)-like process to form an image of the locations of the emitters in a target scene. This method

has the advantage of not requiring any a priori knowledge of the number of emitters in the scene.

Nor does it rest on an ability to identify regions of the data which come from individual emitters,

though if this capability is present it may improve image quality.

Additionally we demonstrate that this method is capable of localizing emitters which transmit

highly correlated waveforms, though complications arise when several such emitters are present in

the scene. We discuss these complications and strategies to mitigate them.
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Finally we conclude with an overview of our method’s performance for various levels of addi-

tive noise and lay out a path for advancing study of this new method through future work.
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Chapter 1

INTRODUCTION

The detection and localization of sources of electromagnetic (EM) radiation has many appli-

cations in both the civilian and defense communities. An example of such an application is the

geolocation of hikers lost on a mountain or in a forest by the detection and localization of the

EM radiation from the signals emitted by their radios. Another practical application of source

localization is the search for modern personal and commercial ships and airplanes in the event of

a crash or other catastrophic failure; such craft contain emergency radio sources for exactly such

purposes. [3]

Current state-of-the-art methods require a large number of receiving antennas and/or significant

preprocessing of the data to identify regions of data which are hypothesized to come from an

emitter. Some methods in wide use also require the user to either know the number of emitters in

a scene of interest a priori or to make a guess at the number. Additionally these methods are often

not well equipped to identify and localize sources in a scene containing several emitters which are

transmitting highly similar waveforms.

We present a method of source localization which is based on the principles of Synthetic Aper-

ture Radar (SAR) imaging. Our method uses the cross correlation of the electromagnetic signals

recorded at two passive (non-transmitting) moving antennas to form a filtered backprojection im-

age of the radio frequency (RF) emitters in a scene of interest. This method aims to fulfill the goals

of traditional source localization schemes, namely to detect and geolocate emitters in a scene of

interest, by applying the mathematical framework of SAR to create an image of the intensity of the

RF radiation in the scene.

This method overcomes the requirement that localization systems measure a scene with more

receivers than there are transmitters present by using the data collected from the scene from many

locations to form an image, the resolution of which will depend on certain flight path parameters.
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Due to its close relationship with traditional SAR imaging methods we have called this new method

Synthetic Aperture Source Localization (SASL).

This method is capable localizing several RF emitters in a scene of interest using only two

antennas as long as at least one antenna is in motion. This method requires no a priori knowledge

of the signals being transmitted beyond the necessity that the receiving hardware be capable of

recording whatever frequency bands of signals are of interest in the scene under observation. Since

the antennas are passive, the platforms on which they are housed can be built much smaller and

cheaper than those required for traditional SAR systems. Such platforms also require less power

since the bulk of the energy cost of a SAR system goes into the transmitting platform. Thus,

despite the similarities in the data collection process, the potential exists for executing this method

of localization at lower cost, both in terms of dollars and energy than that required for traditional

SAR data collection systems.

We begin this thesis by examining the history of source localization and overviewing existing

methods in the literature. In Chapter 3 we provide an introduction to the mathematics of SAR

including both Monostatic and Bistatic SAR systems. We show how the data recorded at SAR

receiving platforms is filtered and backprojected to create an image of the target scene and how

artifacts arise in the image.

In Chapter 4 we introduce the method of Synthetic Aperture Source Localization including an

analysis of the backprojection operator and construction of an appropriate filter to minimize image

artifacts. This introduction to the method is done under ideal conditions in which the operator

is able to separate the signals from different sources prior to data processing. In Chapter 5 we

construct and analyze numerical simulations of the the SASL model built up in Chapter 4 and

identify limitations to the model.

In Chapter 6 we return to the idealized assumptions regarding the data made in Chapter 4 and

derive a model for the recorded data under the more realistic case in which the recorded signal is

the superposition of all signals transmitted from the scene. Here we assume that the contributions

from different emitters cannot be separated a priori. This leads us to an examination of the so called

2



cross terms which arise when the received signal contribution from one emitter is cross correlated

with that received from another emitter in the scene.

In Chapter 7 we derive an expression for the contribution to the data of such terms and deter-

mine the family of curves which defines the backprojections of such terms in our image. We then

prove that, in a noiseless data collection, the family of the backprojection curves for terms arising

from diagonal term emitter data intersect in a unique point regardless of receiver flight path and

that this point is the emitter location. In contrast, we prove that the family of backprojection curves

for the cross terms do not have a unique point of intersection except in a few special cases, and that

in these cases the point of intersection is the location of an emitter in the scene of interest.

We are thus able to conclude that the only persistent peaks in the SASL image will be at the

location of the emitters. Therefore, although cross term effects may play a roll in cluttering the

image with undesirable phantom artifacts these artifacts should become less pronounced as the

flight path of the data-collecting antennas is lengthened.

Chapter 8 further extends the model toward a more realistic data collection scenario by exam-

ining the effects of flying three dimensional flight paths and of having more than one receiver in

motion during the data collection process. Chapter 9 then analyzes the effect on the image in the

presence of noise in the recorded signal. We also discuss the difficulty in rigorously quantifying

the noise present in the post processing data for our method because of the presence of noise in

both the received signal and in the signal used for the cross correlation filtering process. Finally in

Chapter 10 we summarize our conclusions and present the problems and extensions to the method

to be addressed in future work.

Throughout this paper we will use the Fourier transform convention

H(f) = F {h(t)} =

∫
h(t)ei2πftdt (1.1)

h(t) = F−1 {H(f)} =

∫
H(f)e−i2πftdf (1.2)
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where f is the variable for the frequency domain and t is the variable of the time domain. Un-

less otherwise specified we will use lowercase letters to denote functions in the time domain and

their uppercase counterparts to denote the corresponding Fourier transform pairs in the frequency

domain.
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Chapter 2

SOURCE LOCALIZATION

2.1 Historical Development of Direction Finding Techniques
The goal of all source localization techniques is to determine the location of an emitter of some

radiation from measurements of the field at a point or points separated from the emitter in both time

and space. In our work we will be concerned with emitters of electromagnetic (EM) radiation.

The basic concepts and principles behind the theory of direction finding and source localization

have existed almost as long as the theory of electromagnetic waves themselves. Only 15 years

after Maxwell published the four differential equations governing the behavior of electromagnetic

waves which bear his name, Heinrich Hertz discovered the directivity of antennas. In 1888 while

conducting experiments to verify Maxwell’s theories Hertz found that various polarizing filters

could be used to influence the reception of electromagnetic waves and that various physical changes

to the apparatus affected the resulting transmitted wave. [4, 5]

The principle of a direction finding antenna based on Hertz’s work was first patented in 1907 by

Otto Scheller. Scheller’s design became widely used in the navigation of airplanes and was used to

create an audible homing tone which allowed pilots to locate a runway and land safely in conditions

of reduced visibility. Various improvements to the state of the art, including miniaturization of

antennas and direction finding based on the Doppler phenomenon continued to appear throughout

the next 70 years. [5]

Since the 1980s digital signal processing techniques requiring implementation on digital com-

puter systems have become ever more prevalent. It is convenient to consider the birth of what may

be termed “modern source localization techniques" from this point. We can break down the mod-

ern approaches to source localization into two broad categories which can be further subdivided

into relatively broad subcategories. [4]
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Figure 2.1: The broad categories of source localization techniques

The first category includes those methods which rely on the transversality of an electromagnetic

wave’s field vectors. These methods directly measure the direction in which the field vectors, either

electric, magnetic, or both, are pointing. From this information the wave’s direction of propagation

can be determined by recalling that the direction of propagation is orthogonal to that of the field

vectors. [6]

An early example of a technique in this category is the Watson-Watt method first developed in

1925. This method uses two crossed directional antennas to measure the magnitude of an arriving

electromagnetic wave. These measured magnitudes are then mixed with a reference signal obtained

from an omni-directional antenna. An arctangent may then be applied to the two results in order

to obtain the arriving signal’s bearing. [4, 6]

The second category of direction finding methods includes those techniques which measure the

orientation of surfaces of equal phase. This category may be further subdivided into those methods

relying on measurement of directional patterns and those relying on aperture sampling. [4]

A simple example of a system which relies on the measurement of directional patterns is that

of a rotating maximal-signal direction finder. Here, an operator physically rotates a receiving

antenna until the voltage output due to an arriving signal reaches a maximum. The bearing of the

arriving signal can then be determined from the rotation angle of the antenna. This method can
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be automated and used for modern applications by the addition of a system which autonomously

detects the antenna angle at the point of maximum received voltage and outputs a computed signal

bearing. This allows for antennas which rotate at speeds much greater than the rate at which a

human operator could identify the signal maximum or record its bearing. [4]

Aperture sampling techniques may be further subdivided into those relying on direct evaluation

of the phase components and those using sensor array processing methods. An example of a direct

evaluation technique is that of a Doppler direction finding system.

In such a system a rotating antenna measures the frequency of an incoming wave. This fre-

quency is modulated with the rotational frequency of the antenna itself. If the antenna is rotating

toward the source of the incoming wave the frequency of the wave is increased, if it is rotating

away the frequency is decreased. From this frequency change a bearing for the incoming wave can

be determined. In practice, systems set out several antenna elements arrayed in a circle and sample

from them in sequence using diode switches to simulate the effect of a rotating antenna. In this

way the speed of rotation of the simulated antenna element can exceed that which is practical for a

physically rotating apparatus. [4]

The final class into which direction finding systems are subdivided are those which rely on

sensor array processing. Broadly speaking these techniques were not possible before the advent of

digital computers powerful enough to handle the necessary calculations in a short enough period

of time. It is this category into which the work done in this dissertation will fall. [4]

2.1.1 The MUSIC Algorithm

Another well known method in the class of sensor array processing techniques is the MUltiple

SIgnal Classification algorithm or MUSIC. The basic mathematical framework for MUSIC was de-

veloped by Schmidt in 1977 and independently by Bienvenu in 1979. It is perhaps the most widely

studied of the modern source localization techniques and is widely used in many applications.

A closely related technique referred to as ESPRIT uses a similar process to the original MUSIC

algorithm but, when applicable, has performance advantages over the original algorithm. [4, 7–9]
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In this subsection we will present the framework of the MUSIC algorithm and briefly examine

the reason for the method’s difficulty in handling highly correlated signals.

First, let there be N emitters in a scene of interest and let us observe this scene with an array of

receiving antennas containingM elements. We model the transmitted signals as complex sinusoids

with the nth signal given by

sn(t) = pne
iωnt. (2.1)

If the received signal at the first sensor is x1(t) = s(t) and it arrives at an angle θ then the

signal recorded at sensor m is

xm(t) = e
−iω (m−1)d sin(θ)

c0 s(t) (2.2)

where d is the element separation and c0 is the speed of light. Then the vector of all recorded signals

at the M sensors can be written as x(t) = a(θ)s(t) where a(θ) is called the steering vector. [7]

With N signals present we have x(t) = As(t) + n(t) where n(t) is the noise vector, the

columns of the M × N matrix A are the an(t) steering vectors for the N received signals, and

s(t) is the N × 1 vector of the N signals. Thus, x(t) is a M × 1 vector where the ith element is

comprised of linear combinations of the ith component of each of theN steering vectors multiplied

by the ith signal. So, each element in x(t) is the sum over the product of all signals recorded at the

corresponding array element with the appropriate delay and angle factor for that signal.

The MUSIC algorithm then computes the M ×M correlation matrix

Rxx = E[x(t)xH(t)] = ARssA
H + Rnn (2.3)

where Rss = E[s(t)sH(t)] is the signal correlation matrix. In the case of perfectly uncorrelated

signals this matrix is the diagonal matrix Rss = diag{σ2
1, . . . , σ

2
N}. If some correlation exists

between the signals but the matrix Rss is still full column rank the MUSIC method will still

work. [7]

However, if two or more signals are perfectly correlated so that Rss is rank deficient the method

fails in general and the signals cannot be resolved. In such cases methods, which are broadly re-
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ferred to as “supper resolution," exist which attempt to process portions of the array independently

in order to absorb the negative effects of this signal correlation. Doing so, however, causes one

to lose some capability since the number of total array elements must be sacrificed to perform the

processing, leading to a reduction in the number of emitters capable of being localized. [7]

Returning to equation (2.3), in the case of additive white Gaussian noise (AWGN), we can

rewrite this expression as

Rxx = E[x(t)xH(t)] = ARssA
H + σ2

0I. (2.4)

The concept behind MUSIC for source localization is then to estimate the noise subspace from

this expression of the available samples. This is done by identifying the eigenvalue/eigenvector

pairs for Rxx. The method then uses the fact that the signal subspace is orthogonal to the noise

subspace to identify signal parameters including the angle of arrival. This can be accomplished as

follows:

We know that the eigenvalues of Rxx are given by the solutions to the equation

|Rxx − λiI| = 0 (2.5)

where, here | · | denotes the matrix determinant.

So, we have

|ARssA
H + σ2

0I− λiI| = |ARssA
H + (σ2

0 − λi)I| = 0. (2.6)

Thus, the eigenvalues of the matrix ARssA
H are given by vi = λi − σ2

0 . To reiterate, this is under

the assumption that the matrix A is comprised of linearly independent steering vectors and that the

received signals are not highly correlated. In this case Rss is non-singular. Under these conditions

we have that, when N < M , the M ×M matrix ARssA
H is positive semi-definite and of rank

N . [10]
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Thus, we will have M −N eigenvalues of ARssA
H equal to zero. Since we have shown that

the eigenvalues take the form vi = λi − σ2
0 , we must have M −N of the eigenvalues of Rxx equal

to σ2
0 , which is the noise variance. We order the eigenvalues from largest to smallest which results

in λM−N , . . . , λM = σ2
0 . There remain N eigenvalues λ1, . . . , λN to be determined.

In practice, due to the randomness of the additive noise in the receiving channel, when the

correlation matrix Rxx is estimated from some finite set of real world data the noise eigenvalues

λM−N , . . . , λM will not be exactly identical. Instead the user of the MUSIC algorithm must iden-

tify these eigenvalues as part of a closely spaced cluster around the smallest eigenvalue. The spread

of the cluster is expected to decrease as the number of samples tends toward infinity with perfect

equality only achieved in the limit.

Once a user has identified the cluster of noise eigenvalues their number may be counted in

order to determine an estimate of the number of signals present in the data. In this way the user

determines the number of signals to identify and localize with the rest of the algorithm. At this

point, the number of signals present in the scene is assumed known for the purpose of localization.

[7]

At this point we have determined the number of signals to be localized and have an eigenvalue

associated with each signal. We then determine the eigenvectors for each eigenvalue according to

Rxxei − λiei = 0. [10]

For the smallest eigenvalues, those associated with the noise subspace

Rxxei − λiei = (ARssA
H)ei + σ2

0Iei − λiei

= (ARssA
H)ei + σ2

0ei − σ2
0ei = (ARssA

H)ei = 0.

(2.7)

Since A is a full rank matrix and we have postulated Rss to be non-singular we must have AHei =

0. Recall that the matrix AH is made up of the steering vectors of the N signals present in the

scene. Since the product of this matrix with the eigenvectors associated with the noise is zero we

conclude that the noise subspace is orthogonal to the signal space defined by the steering vectors.
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The direction of arrival (DOA) of the signals recorded at the array can then be estimated by

forming a matrix of the eigenvectors associated with the noise subspace, call this matrix Un. The

MUSIC algorithm then searches through all angles θ and plots the spatial spectrum according to

the equation

P (θ) =
1

aH(θ)Un

. (2.8)

When θ = θi, the direction of arrival of a signal, this function will have a peak. Determination of

the N peaks of the function leads to detection of the angles of arrival of the N signals.

Unfortunately there are many drawbacks to this approach including computational time and the

difficulty in distinguishing between highly correlated signals in the scene. The algorithm ESPRIT

manages to overcome some of the problems but at the cost of twice the number of sensors and the

correlated signals problems remain.

As mentioned previously, when the signal vector s(t) contains two or more highly correlated

signals the resulting correlation matrix Rss is not full column rank. As such, the rank of the signal

subspace is below the number of signals to be localized. When this occurs the correlated signals

cannot be distinguished from one another and the output of the algorithm may display a single

displaced peak due to both of the correlated signals, rather than identifying the angle of arrival for

each independently as is desired.

2.2 Time Difference of Arrival Localization Techniques
This dissertation will develop a new method of source localization which we are calling Syn-

thetic Aperture Source Localization (SASL). This method will draw on established work in source

localization which employs the cross correlation of signals to determine the time difference of ar-

rival (TDOA) at two spatially separated receivers. Once the cross correlated data model has been

developed we will employ the mathematical framework of Synthetic Aperture Radar (SAR) to form

an image of the target scene. Our goal is to image the scene so that all of the Radio Frequency (RF)

emitters are clearly reconstructed in their correct locations and with the correct relative intensities.
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This image will be formed by means of a filtered backprojection operator. This operator re-

sembles that used in x-ray tomographic imaging, Electrical Impedance Tomography (EIT), and

traditional SAR methods. The signals received at two moving and geospatially separated receiv-

ing antennas will be cross correlated for each position of the antenna pair. The output of this

cross correlation operation is then taken as the recorded data for a SAR-like image construction

process. [2, 11]

This image construction process filters the cross-correlated data to reduce the appearance of

artifacts and then backprojects the resulting filtered data into image space along the curves of

equal Time Difference of Arrival (TDOA) for each position of the receiver pair. When the data is

backprojected in this way, the superposition of all such projections interferes constructively in the

image space locations corresponding to the emitter positions in the scene. In this manner an image

of the locations and relative magnitudes of the RF emitters is reconstructed from the measurements

of the emitted signals. This process will be discussed in greater detail in Section 3.1.5.

2.2.1 Estimation of the TDOA

As described above, the localization of a radiating source using information about the TDOA

at two spatially separated receivers involves first processing the two received signals using a cross

correlation function in order to get an estimate of the TDOA. We then process the TDOA estimate

obtained in the first step in some way in order to obtain some estimate of the source’s position in

the scene of interest.

The mathematical foundations for determining TDOA measurements from the cross correla-

tion of the received signals at two spatially separated receivers was first put forward by Knapp

and Carter. Their 1976 paper demonstrated that the time argument at which the cross correlation

function achieves its extrema is a maximum likelihood estimator (MLE) for the TDOA of the two

signals. This important advancement over simple time difference calculations via subtraction al-

lows for the determination of the TDOA without requiring any a priori knowledge of the time at

which the signal was transmitted. [12, 13]
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(a) A signal received at 10 seconds af-
ter listening begins

(b) A signal received at 4 seconds af-
ter listening begins

(c) The Cross Correlator has a peak at
the TDOA

Figure 2.2: An example of the effect of Cross Correlation

This process can be demonstrated visually using a simple test case. Consider a sinc function

transmitted at some unknown time t0 from an emitter in a scene of interest and recorded at two

geospatially separated receivers. The recorded signals as well as the result of cross correlating

them is shown in Figure 2.2.

In Figure 2.2c we observe that the difference in the arrival times for the signal at each receiver

can be clearly identified from the point at which the cross correlator achieves its maximum. Fur-

thermore, the peak of the cross correlation function is almost an order of magnitude above that of

the signal peaks. Thus the cross correlation process has the additional benefit of allowing for the

identification of TDOAs for signals which may be difficult to pick out from the noise of a scene.

Early methods in applying a generalized cross correlation to the determination of TDOA were

largely developed by researchers using sonar processing to locate acoustic sources. These early

methods were adopted by the electromagnetics community for the estimation of the TDOA for

arriving EM waves at passive receivers. However, Fowler and Hu have shown that the development

of TDOA models based on cross correlation for the acoustic case does not translate perfectly into

the electromagnetic one. [14]

In the acoustic case both the signal and the noise are modeled as a zero mean wide-sense

stationary random process and are generally taken to be Gaussian in nature. These assumptions

match the physical reality of the target emitters which early acoustic researchers were trying to

locate. A ship’s motor for instance can be taken as an acoustic source giving rise to a signal which
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is effectively a random Gaussian. However, in the electromagnetic case the assumption that the

signal itself arises from a random process is often a poor one. [14]

Fowler and Hu demonstrated that electromagnetic sources, which are better modeled as deter-

ministic signals, give rise to a different form of the MLE. In each case the MLE is a prefiltered

version of the received signals which is then cross correlated. However the prefiltering is applied

differently for acoustic sources than electromagnetic ones. In the acoustic case the prefilter relies

on the spectral density of both the signal and the noise. In the electromagnetic case the prefilter-

ing relies on the the noise spectral density alone. As such, the MLE for the electromagnetic case

reduces to an unfiltered cross correlator whenever the noise can be considered white. The acoustic

case requires both noise and signal to be white in order to achieve the same reduction. [14]

2.2.2 Localization of Sources by TDOA

Many established methods exist for performing source localization using measurements of

TDOA. These methods are sometimes referred to as hyperbolic location systems, though the term

TDOA systems is more common. [13]

Perhaps the simplest of these techniques is the classical method of triangulation. In a trian-

gulation system a series of receivers detect the incoming signal and a calculation of the TDOA is

computed for each receiver pair. Then, using each receiver pair as the foci, hyperbolas of equal

TDOA may be drawn. The intersection of these hyperbolas is the location of the receiver. An

example of this is seen in Figure 2.3. [13]

In this figure we have four receivers, each represented by a colored circle. We also have a single

transmitter represented by a magenta square. The red and blue hyperbolas shown correspond to

the TDOA curve drawn using the leftmost black circle as one foci and the red or blue, respectively,

circle as the other foci. The third hyperbola, the one shown in black, is the TDOA curve for the

rightmost circle paired with the red circle. While many points of intersection exist between one or

more branches of each hyperbola with another hyperbola in the image, there is only a single point

14



Figure 2.3: Triangulation: Four receivers are able to triangulate one emitter via intersection of TDOA
curves.

at which all three hyperbolas intersect simultaneously, this is the location of the emitter which

transmitted the signal.

Here we have plotted both branches of the three hyperbolas formed by drawing curves of equal

TDOA. This amounts to a data set which is agnostic regarding whether the signal arrived at the red

or the black receiver first. That is, we have assumed we know the magnitude of the TDOA, but

not its sign. In practice, taking the cross correlation of the two recorded signals will yield a value

for the TDOA which can be either positive or negative. This allows us to eliminate one branch

from each of the hyperbolas shown, thereby simplifying the process of localizing the emitter to the

intersection of just three curves instead of six.

The term triangulation comes from the classical case of an emitter transmitting a signal at a

known time. In this case, circles of radius equal to the Time of Arrival (TOA) may be drawn cen-

tered upon each receiver. The emitter is then located at the intersection of these three circles. When

the emitter transmits a signal at an unknown time it takes at least four receivers to localize it in the

plane. Five or more receivers are required in a three dimensional geometry. Additional receivers

are required to localize more than one emitter present in the scene. This becomes problematic as

the number of emitters to be localized grows. [4]
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Additionally, basic triangulation provides a location point for an emitter, but does not pro-

vide information regarding emitters relative strengths and cannot accurately reconstruct extended

sources which cannot be accurately treated as point-like. Also, in the presence of noise, additional

optimization techniques are required since the TDOA hyperbolas will not perfectly intersect at a

single point. [11, 13]

In 1986 Norton and Linzer introduced a source localization method using backprojection based

on previous work that had been published in the x-ray tomography literature. Their method used

diametrically opposed receivers laid out in a circle around the region of interest to record incoming

signals. They then cross correlated the signals and backprojected the resulting data along the lines

from which it was collected. [11]

Norton and Linzer assumed that the sources were arrayed randomly and radiated isotropically.

Under these conditions they showed that the imaging process was linear with regard to the source

intensity and that complex and extended sources could be imaged quantitatively. These results

were verified numerically by localizing a signal caused by breaking a glass capillary on a steel

plate. They also demonstrated that the backprojection technique was capable of localizing sources

from much lower signal to noise ratios (SNR) than triangulation or other traditional localization

techniques. [11, 15]

This work has been extended to consider the minimum number of receivers required to localize

an RF transmitter [16], as well as to consider the case of a single moving RF emitter. [17] Other

research has been conducted in applying a fleet of UAVs to collect RF data and geolocate a single

emitter of interest. However, this work does not involve a backprojection imaging process. [18,19]

Work has also been done on the effectiveness of using the asymptotes of the TDOA hyperbolas

rather than the full hyperbolas themselves to estimate the TDOA of received signals. Doing so

results in a set of linear equations in the region far from the receivers. It has been shown that

in certain circumstances this approximation can be used to precondition algorithms used in the

methods above and thereby improve the results. [20]
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As previously discussed, our method uses the cross correlated signals from a moving pair of

receivers to form an image by use of a SAR-like backprojection technique. Work has been done in

examining the mathematical similarities between the use of passive multistatic radar (PMR) sys-

tems, which seek to use the emitters in a scene of interest to image the scattering objects present

in the scene, and the source localization problem. It has been shown that mathematical equiva-

lences exist between the two when the scattering objects are modeled as RF emitters but that large

differences in the signal strengths means that these equivalences are of limited use. [21]

It has been demonstrated that the cross correlation of the two received signals can be viewed in

the SAR framework as an approximation to performing the traditional matched filtering operation

which will be discussed in Chapter 3. Furthermore it has been shown that under the ideal conditions

of a noiseless signal reception at one receiver and the absence of the direct path signal at the other

receiver the cross correlated data achieves the same detection performance of the ideal matched

filter in traditional PMR. [22]

2.3 Related Techniques
While the subject of this dissertation is the presentation of a new and unique method of source

localization using a backprojection algorithm in the spirit of SAR imaging systems, certain closely

related techniques have recently been proposed which rely on a similar theoretical framework to

overcome the inherent limitations in the previously discussed methods.

In addition to the localization schemes previously discussed, methods based on the Angle of

Arrival (AOA) and Frequency Difference of Arrival (FDOA) are also in broad use. Most of the

more advanced forms of these methods however, have one or more shortcomings which cause the

method to be inherently suboptimal. Indeed, Amar and Weiss demonstrate that fundamental limits

on AOA techniques will lead to a suboptimal geolocation method in all cases. From this they

conclude that new methods should be developed which move beyond the traditional approaches.

[23]
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Many traditional methods of localization based on AOA, FDOA, or TDOA can be grouped into

a class of algorithms broadly referred to as “two step" methods.

The name two step comes from the fact that these algorithms first use the measurements at each

individual receiver to calculate an estimation of the time delay, doppler frequency, angle of arrival

(AOA) or so forth at each receiver independently. These independent estimates are then combined

to form some estimation of the target’s true position in the scene. These methods fail to account

for the fact that all calculated parameters, such as AOA, must arise from the same point. Thus,

these methods can result in the calculation of AOA measurements which do not produce positions

lines that all intersect at a since point. [24, 25]

Methods for performing these position estimations as a single step process have been proposed.

Such methods are sometimes to as direct position determination methods. These methods utilize

the measurements from all receiver stations simultaneously to maximize a cost function that de-

pends upon the unknown position parameter. When the signal to noise ratio is low it has been

shown that these methods outperform the traditional two step methods. However, such methods

require higher communication bandwidth since the full observations, and not merely the parameter

estimations, must be transmitted to the processing hub. [24–26]

Our method differs from these approaches in that we apply a backprojection technique based

on the data recorded from moving receivers to form an image of the target scene from which the

location of the emitters may be deduced. Weiss et al use the data from static receivers to estimate

the position of an emitter via a cost function which is based upon the maximum likelihood (ML)

estimator.
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Chapter 3

THE MATHEMATICS OF SYNTHETIC

APERTURE RADAR

3.1 Synthetic Aperture Radar
We turn now to a discussion of the mathematical framework of Synthetic Aperture Radar (SAR)

that we will use to construct a quantitative image of the distribution of RF emitters in a scene of

interest.

In 1951 Carl Wiley, then a mathematician with Goodyear Aircraft Company, invented SAR as

a solution to a classic problem in radar imaging. The resolution achievable in a radar image can be

measured in terms of both range and cross range dimensions. The resolution in the range direction,

that is the direction in which the radar is aimed, depends on the bandwidth of the transmitted signal.

The cross range resolution is inversely proportional to the size of the antenna, or aperture, being

used to transmit the waveform. This phenomenon occurs because larger apertures give rise to

smaller footprints on the ground. See Figure 3.1. [2, 27, 28]

Figure 3.1: The antenna footprint is smaller for larger antennas

In real aperture imaging targets which are separated from each other in the “in-range" direction

(see Figure 3.2a) can be resolved because the scattered wave takes longer to return to the radar
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antenna from objects farther away. However, all objects which are separated in the “Cross-Range"

direction but share the same range distance from the radar cannot be resolved if their separation

distance is less than the size of the antenna footprint (see Figure 3.2b). This is due to the fact that

the scattered returns from all of these objects arrive at the radar at the same moment. [27, 28]

This can be understood mathematically. Let x be the variable describing a position in the scene,

and let T (x) be a function whose value at each point x is a model for how reflective the scene is

at that point. That is, T (x), called the scene reflectivity function, models the fraction of incident

radar energy reflected at location x and measured at the receiving antenna.

Then the measured return at the radar for each time sample is the line integral of T (x) over the

curve of fixed iso-range contours corresponding to the wave travel distance for that time sample.

Since this integration necessarily blurs out all objects located on the same iso-range curve, very

narrow beamwidths are required to reduce the size of the illuminated region and thus achieve good

cross-range resolution.

(a) In-Range and Cross-Range directions for a SAR image
[2]

(b) A Cross Range ambiguity exists along iso-range con-
tours. [27]

Figure 3.2

For a given target distance R in range and transmitted wavelength λ the achievable cross-range

resolution (∆CR) for a real-aperture imaging radar is given by:

∆CR ≈ R
λ

D
(3.1)
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Where D is the aperture length. For a radar operating at a distance of 50km from its target and

transmitting a 150 MHz wave (the center frequency of a wave which achieves a roughly 1m resolu-

tion in the range direction), we would require an antenna 1500m long to achieve a 1m cross-range

resolution. This is clearly infeasible. [27, 28]

The SAR process overcomes this difficulty by placing a much smaller antenna on a moving

platform. For our purposes, we will assume the platform is an aircraft flying over our scene of

interest. The returns gathered by the platform from multiple locations along its flight path, or

“looks," can be coherently combined in order to synthesize the return from an aperture which is

the total length of the flight path. Using this process, resolutions as fine as 10cm are achievable

using antennas which can be mounted beneath a standard aircraft. [2, 27, 28]

In the rest of the chapter we will present a brief introduction to the different SAR modalities

that are applicable to this dissertation and how they relate to the method of Synthetic Aperture

Source Localization presented in this dissertation.

3.1.1 Electromagnetic wave propagation

In all SAR regimes the waves under consideration are electromagnetic and therefore must

satisfy Maxwell’s equations.

∇× E(t,x) = −∂B(t,x)

∂t
(3.2)

∇×H(t,x) = J (t,x) +
∂D(t,x)

∂t
(3.3)

∇ · D(t,x) = ρ (3.4)

∇ · B(t,x) = 0 (3.5)

In this formulation, E is the electric field, B is the magnetic induction field, D is the electric

displacement field,H is the magnetic field, J is the current density, and ρ is the charge density.

For our work, and indeed most airborne SAR applications, the propagation takes place in dry

air, which can reasonably be modeled as free space. In free space both the charge and current
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densities are zero so that J = ρ = 0, and the free space constitutive relations given by

D = ε0E (3.6)

B = µ0H (3.7)

hold. From these relations we may derive a simplified expression for the governing differential

equation. We begin by taking the curl of (3.2) and substituting (3.7) into the result; this yields:

∇×∇× E(t,x) = ∇× −∂B(t,x)

∂t
= − ∂

∂t
(∇× µ0H) . (3.8)

Then, noting J = 0 and substituting (3.6) into (3.3) we find

∇×H =
∂ε0E(t,x)

∂t
(3.9)

so that

∇×∇× E(t,x) = ∇(∇ · E)−∇2E = −µ0ε0
∂2E
∂t2

(3.10)

where, in the second equality, we have applied the triple product identity. Since we have assumed

ρ = 0 we have

∇ · D(t,x) = ∇ · ε0E(t,x) = 0 (3.11)

thus∇ · E = 0 and (3.10) reduces to

∇2E = µ0ε0
∂2E
∂t2

. (3.12)

Thus, we have shown that the electric field components satisfy the scalar wave equation when

the assumption of free space propagation is valid. A similar derivation demonstrates the same

expression holds forH.
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In a region far from any EM sources this equation can be rewritten as

∇2E − 1

c2
0

∂2E
∂t2

= 0 (3.13)

where c0 = 1/
√
µ0ε0 is the wave speed of an electromagnetic wave in free space.

When a scattering object is present in the scene we can consider the effect of the scattering to

be a perturbation in the wave speed so that the effective wave speed c(x) is given by

1

c2(x)
=

1

c2
0

− T (x). (3.14)

When modeling a scene using we shall often assume that the scatterers in the scene can be modeled

as a collection of point scatterers. [29]

The goal of a SAR imaging process is then to construct an image of the scene reflectivity func-

tion T (x) from measurements of the scattered waves. Using this model, the governing equation

for the waves present in the scene away from any sources is

∇2E tot − 1

c2(x)

∂2E tot

∂t2
= 0. (3.15)

In order to take account of the effects of the antennas, which transmit and receive the waves, it is

necessary to add a source term to these equations. The governing equations of the incident and

total fields for a SAR system are then

∇2E in − 1

c2
0

∂2E in

∂t2
= j(t,x) (3.16)

∇2E tot − 1

c2(x)

∂2E tot

∂t2
= j(t,x) (3.17)

where j is proportional to the time derivative of the current density on the antenna.The incident

field can be solved for by convolving with the Green’s function solution to (3.18). [30]

23



The solution to the scalar wave equation of interest to us is the outgoing Green’s function

satisfying

∇2g(t,x)− 1

c2
0

∂2g(t,x)

∂t2
= −δ(t)δ(x) (3.18)

and is explicitly given by

g(t,x) =
δ(t− |x|/c0)

4π|x|
. (3.19)

Once we have this Green’s function solution, the solution to (3.16) is merely the convolution of

this Green’s function with the source term, j(t,x) ∗ g(t,x). Thus

E in(t,x) = −
∫
g(t− τ,x− y)j(τ, y)dτdy (3.20)

= −
∫
δ(t− τ − |x−y|

c0
)

4π|x− y|
j(τ,x)dτdy. (3.21)

We can rewrite (3.16) in the frequency domain as

(∇2 + k2)Ein(f,x) = J(f,x). (3.22)

In the frequency domain we have the Green’s function expression

G(f,x) =
ei2πk|x|

4π|x|
(3.23)

where k = f/c0.

We may solve (3.22) to obtain the following expression for the incident wave:

Ein(x) =

∫
G(x− y)J(y)dy ≈ ei2πk|x−x0|

4π|x− x0|
F
(
f, x̂− x0

)
. (3.24)

Note that we have added a superscript to indicate that this is the field due to the incident wave, that

is, the wave that is incident on the scattering elements in the scene before any scattering occurs.

Here, x0 is the location of the transmitting antenna and ̂ denotes a unit vector. The function F
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incorporates information about the transmitted waveform and transmitting antenna beam pattern.

For more on the relationship between F and J see [2]. Here we have also taken advantage of the

far-field approximation.

The far-field approximation is valid for |x| � |y| and is given by

|x− y| = |x| − x̂ · y +O
(
|y|2

|x|

)
. (3.25)

An expression for the scattered field may be obtained by subtracting (3.16) from (3.17) to obtain

(
∇2 − 1

c2
0

∂2

∂t2

)
Esc(t,x) = −T (x)

∂2

∂t2
E tot(t,x), (3.26)

which may be expressed in integral form as

Esc(t,x) =

∫
g(t− τ,x− z)T (z)

∂2

∂τ 2
E tot(τ, z)dτdz (3.27)

=

∫
δ(t− τ − |x− z|/c0)

4π|x− z|
T (z)

∂2

∂τ 2
E tot(τ, z)dτdz. (3.28)

This expression is known as the Lippmann-Schwinger integral equation. We note here that, since

E tot is the sum of both the incident and the scattered fields (3.28) is not an explicit formula for

calculating Esc but rather an equation that must be solved. [2]

Additionally (3.28) is nonlinear since T (x) is multiplied by the right hand side term containing

Esc. In order to linearize this equation we apply a simplification known as the Born, or single

scattering, approximation.

The mathematical effect of the Born approximation is to replace E tot with E in in (3.28). It

amounts to the approximation of the total field by the first term in an expansion of E tot known as

the Neumann series. From a physical standpoint, the Born approximation makes the assumption

that all waves only scatter once before returning to the radar receiver. [2, 29]

Applying this approximation and solving the resulting integral equation yields the following

frequency domain expression for the scattered field.
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Esc ≈ −
∫

ei2πk|x−z|

4π|x− z|
T (z)f 2Ein(f, z)dz (3.29)

We may now substitute our expression for the incident field into (3.29) and obtain the model

Esc =

∫
ei2πk|x−z|

4π|x− z|
T (z)f 2 e

i2πk|z−x0|

4π|z− x0|
F
(
f, ẑ− x0

)
dz. (3.30)

3.1.2 Matched Filtering

Now, the reception and recording of any electromagnetic wave using a real (as opposed to

a simulated) system involves the inclusion of some noise factor. This noise factor is typically

considered to be added to the received waveform so that what is actually recorded is

Srec(t) = Esc(t) + n(t). (3.31)

In an ideal case we would like to apply a filter to the recorded data which would completely

eliminate the noise factor. This is not possible since the noise arises from a random process and

cannot be deterministically modeled. Thus we must settle for a filter which maximizes the Signal

to Noise Ratio (SNR).

We apply the filter h(t) to the recorded signal Srec via convolution. The signal and noise outputs

after application of the filter are, respectively

ηs(t) =

∫
h(t− τ)Srec(τ)dτ =

∫
h(t− τ)S(τ − t′)dτ (3.32)

ηn(t) =

∫
h(t− τ)n(τ)dτ. (3.33)

In the second equality above we have modeled the received signal as a time delayed version of the

known transmitted signal. Taking the noise to be generated by a white Gaussian process we may

write E[n(t)n̄(t′)] = Nδ(t− t′), where E denotes statistical expectation and N is the noise power.
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Under these conditions the SNR is

SNR =
|ηs(t)|2

E|ηn(t)|2
(3.34)

Our goal is to choose the filter h(t) to maximize this expression.

Computing the expressions for both the numerator and denominator above we find

SNR =
|
∫
h(t)s(−t)dt|2

N
∫
|h(t)|2dt

. (3.35)

By definition

||h(t)||22 =

∫
|h(t)|2dt. (3.36)

The Cauchy-Swartz inequality states that, for given functions f(t) and h(t),

∣∣∣∣∫ h(t)f̄(t)dt

∣∣∣∣ ≤ ||h||2 ||f ||2 (3.37)

where equality occurs iff h(t) ∝ f(t). Thus, the maximizing of (3.35) requires that h(t) = s̄(−t).

That is, the best SNR occurs when our applied filter is a time reversed complex conjugated version

of the transmitted signal. This is known as the Matched Filter. [2]

With these expressions in hand we now turn our attention to the different SAR modalities.

3.1.3 Monostatic SAR

In Monostatic SAR (MSAR) both the transmission and reception components of the SAR sys-

tem are handled by the same antenna and only one platform is utilized. In practice some systems

exist which are comprised of two antennas, one for transmission and one for reception, but the two

elements are located so close together that their separation distance is negligible compared to the

range to the target scene. Such systems are referred to as pseudo-monostatic and the phenomenol-

ogy is very near that of the true monostatic case. In Section 3.1.4 we will contrast such systems

with the Bistatic case in which the transmitting and receiving antennas are not collocated.
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When the transmit and receive antennas are collocated, the point at which the scattered wave

is measured is the same as the point at which the wave originated, namely x0. Thus, we evaluate

(3.30) at x0 and obtain the following model for the collected signal

S(f,x0) =

∫
ei4πk|x0−z|A(f,x0, z)T (z)dz (3.38)

where the factor

A(f,x0, z) =
f 2Frec(k, x̂0 − z)Ft(k, x̂0 − z)

(4π|x0 − z|)2
(3.39)

contains information regarding the transmitting and receiving antenna beam patterns as well as

geometric spreading factors. A may also include the effects of matched filtering on the received

signal.

Up to this point we have considered the transmitting and receiving hardware to be station-

ary. We may now include the platform’s flightpath into our model by parameterizing the antenna

location for a given data collection point.

We will assume that our platform follows a known flight trajectory denoted by γ(s) where s

is referred to as the slow time variable. This is to distinguish it from t which is known as the fast

time variable. In our model t measures the wave travel time over the course of a single transmit

and receive cycle (one “look"), whereas s measures the platform location over the duration of the

entire flight path. Substitution of the platform flightpath into our model produces the following

expression for the data collected.

D(s, f) =

∫
ei4πk|γ(s)−z|A(f, s, z)T (z)dz (3.40)

This model assumes the start-stop approximation. This approximation takes the platform to be

stationary throughout the duration of each look and to jump to the next collection point between

looks. Although this is clearly not true in practice, the typical platform moves at speeds orders of
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magnitude slower than the wave travel speed so the effects of this approximation are negligible for

most applications. [2, 28]

The time domain version of (3.40) is

d(s, t) =

∫
e−i2πf(t−rM (s,x))A(x, s, f)T (x)dxdf (3.41)

where

rM(s,x) =
2|γ(s)− x|

c0

. (3.42)

Here rM is twice the range from the radar platform to the point x in the scene. As will be seen

later, the data collection for each fast time step amounts to a line integral of the scene reflectivity

over a circle.

3.1.4 Bistatic SAR

We now turn to the case where the transmit and receive antennas are not collocated. If the

transmitting antenna is located on one platform and the receiving antenna is located on another

platform the system is called Bistatic. The more general case of Multistatic Synthetic Aperture

Radar will not concern us in this research.

In a Bistatic SAR system (BiSAR) the two platforms are assumed to fly known, but independent

flight paths. We denote these as γT (s) and γR(s) for the transmit and receive platforms respectively.

In this case, replacing x0 with γT (s) in (3.30) and solving for the field at location γR(s) produces

d(s, t) =

∫
e−i2πf(t−rB(s,x))A(x, s, f)T (x)dxdf (3.43)

where

rB(s,x) =
|γT (s)− x|

c0

+
|γR(s)− x|

c0

. (3.44)

Here rB is referred to as the Bistatic Range and is the sum of the distance from the transmitting

platform to the point x in the scene and the distance from x to the receiving platform. The lines of
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equal Bistatic Range in the scene are ellipses with foci at the transmitting and receiving platform

locations. [31]

This SAR geometry which may be termed active BiSAR was nominally extended by Nicholas

Willis in [32] to include the case of a passive receiver with what is termed an emitter of oppor-

tunity. Although a BiSAR set up was not explicitly investigated, the conditions under which a

source located in the scene that is not under the direct control of the radar operator can be used

as the transmitting platform for a bistatic radar data collection geometry were laid out. The term

hitchhiker is often used to refer to such systems in the literature.

The initial work of Willis has been extended in [33] and [34] to include a full SAR backprojec-

tion method to image the scene radiance. This may be taken as an analog of the scene reflectivity

function which is the target object in traditional BiSAR systems. This work, however, relies on

certain statistical assumptions regarding the nature of both the transmitted signals and the scene

reflectivity function.

3.1.5 Backprojection

The goal of traditional SAR imaging is form an image of the scene reflectivity function T (x).

This is accomplished by applying a backprojection operator to the data d(s, t) obtained from (3.41)

or (3.43) which projects the data into an image space and, over the course of many data collection

angles, ultimately forms an image of the reflectivity function for the target scene. To this end, d

can be viewed as a forward operatorW acting on T , that is,

d(s, t) =W {T} (s, t). (3.45)

We then seek to apply an appropriate imaging operator K that will recover T from the recorded

data.

The operator K which accomplishes this is reffered to as a filtered-backprojection (FBP) op-

erator. This operator applies some filter Q to the data and then back-projects the result to obtain

an image. The backprojection interferes constructively at points at which a scattering element is
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located. As we shall see in Section 4.4, we seek to choose the filter Q so as to minimize the

appearance of artifacts in the image.

In general, if d(s, t) is our data the FBP operator acts on d as

I(z) = K[d](z) :=

∫
ei2πf(t−r(s,z)/c0)Q(z, f, s)d(s, t)dfdsdt (3.46)

=

∫
e−i2πfr(s,z)/c0Q(z, f, s)D(s, f)dfds (3.47)

where D(s, f) is the frequency domain model of the data.

We can achieve an intuitive understanding of the action ofK on d by examining the case where

we choseQ ≡ 1. This amounts to the back projection of the data without any filtering. WithQ ≡ 1

the image I becomes

I(z) =

∫
ei2πf(t−r(s,z)/c0)d(s, t)dfdsdt (3.48)

=

∫
δ(t− r(s, z)/c0)d(s, t)dsdt (3.49)

=

∫
d(s, r(s, z)/c0)ds. (3.50)

Figure 3.3: Backprojected radiation can image source elements inside a region of interest. [1]

Thus without any filtering, the application of the backprojection operator has the effect of

projecting the recorded data onto those locations z which are at the correct travel time r(s, z)/c0
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from the receiving antenna at the time step s. In monostatic SAR the backprojection is done over

circles for which the radius is the correct range from the radar defined by rM(s, z). For the case of

BiSAR, rB(s, z) produces backprojection over the ellipses of correct bistatic range.

In Chapter 4 shall see that, for the case of a SASL data collection and backprojection process

r(s, z)/c0 yields backprojection over the hyperbolas of correct TDOA.

The backprojection process is illustrated graphically in Figure 3.3. Here four radiative source

elements emit some form of radiation that is measured along the eight sides of the surrounding

octagon. These measurements can be considered mathematically as projections of the two dimen-

sional source region onto the one dimensional line over which the field strength is recorded.

The data collection process is illustrated on the left. Here each of the small squares represents

a point at which the incident radiation is measured. The radiated waves for one such set of data

collection points is shown.

The backprojection operation then projects these field measurements along the line running

through the interior of the region from which the original data was recorded. In those regions of

image space where a source is located, the backprojected data interfere constructively to build up

an image of the radiating elements. This is shown in figure 3.3 on the right.

A clear difficulty with this process is the star-like artifact patterns that build up due to the

backprojection. Filtering the data before backprojection by appropriate choice of Q in K can

minimize the appearance of these artifacts.

An example of the process of filtered backprojection in Monostatic SAR is displayed in Figure

3.4.

It is clear from the images in Figure 3.4 that something odd is happening. The scattering

objects have been reconstructed correctly, but a mirror image of the pair has been reconstructed as

well. This is known in SAR terms as the left-right ambiguity. It arises due to the fact that, if an

antenna’s beam is centered at the ground beneath the radar there is no way to determine whether

the contribution to the data comes from the left or right side of the craft. To eliminate this problem
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antennas are mounted so that they project and record data from only one side of the aircraft. This

effectively eliminates such mirror points. [2]

(a) Scene Truth: Two scatterers (b) The backprojected image from one slow time point

(c) The backprojected image from 10 slow time points (d) The backprojected image from 20 slow time points

(e) The backprojected image from 30 slow time points (f) The backprojected image from 50 slow time points

Figure 3.4: A series of backprojection images for an increasing number of slow-time samples [2]
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3.2 SAR Resolution
We conclude this chapter with a brief look at the resolution which is achievable in a SAR image

for given data collection parameters. As was briefly discussed earlier, the resolution of a traditional

monostatic system is limited by the beamwidth of the antenna or antennas performing the transmis-

sion and reception of the signal. As was previously discussed, the cross range resolution of such a

system is approximately ∆CR ≈ R λ
D

. Where R is the range to the target, λ is the wavelength of

the transmitted signal, and D is the size of the physical aperture.

If, as in Spotlight mode SAR, the target is visible throughout the length of the synthesized

aperture, the cross range resolution achievable is given by

∆CR =
λ

4 sin(∆θ
2

)
(3.51)

where ∆θ is the angular interval over which the aperture is synthesized. [35]

From this it is clear that the resolution achievable in a traditional SAR image is dependent both

on the transmitted waveform and on the duration of the flight path which synthesizes the aperture.

The Fourier resolution of a SAR image can be defined as the main lobe width of the impulse

response. This is also known as null-to-null resolution and is shown graphically in Figure 3.5b

. [35] [2]

The resolution which can be attained in a back projection image is ultimately dependent on

the data collection manifold (DCM), that is, the set of data which is collected by the receiving

antenna. The data collection manifold is a region in Fourier space which is defined by the range of

the variables in the phase of the data model. As seen in Figure 3.5a the data collection manifold is

the a sector of an annulus.

As the range of the receiving antennas to the target increases, the data collection manifold

becomes more rectangular over equal flight path lengths. If we assume the manifold may be

approximated by a rectangle we can factor the impulse response as
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(a) The data collection manifold for a 20km aperture with
20MHz bandwidth signal with fc = 30MHz.

(b) The peak width distance for a standard sinc function

Figure 3.5: Diagram of a DCM and the Null-to-Null width

L(z,x) =

∫
ei2π(z−x)·ξdξ ≈

∫
ei2π(z1−x1)ξ1dξ1

∫
ei2π(z2−x2)ξ2dξ2. (3.52)

The resolution of the image can then be considered by examining the cross-range and in-range

components separately. We can apply these same principals to our formation of a SASL image.

We will explore these ideas more fully in chapter 5 when we consider the numerical simulation of

SASL images. [35]
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Chapter 4

SYNTHETIC APERTURE SOURCE

LOCALIZATION IN TWO DIMENSIONS

4.1 Introduction
Our work is fundamentally different from the SAR modalities described above in that we are

seeking to reconstruct an image, not of the scene reflectivity function T (x) but rather of what may

be termed the source intensity function, which we denote by V (x). Here V (x) is the spatial de-

pendence, that is time invariant representation, of the time dependent source function j(x, t) which

gives rise to the electromagnetic fields emanating from a scene of interest. Simply put, we are try-

ing to image the locations of RF emitters in a target scene using measurements of the direct path

EM fields they transmit, rather than imaging scattering objects in the scene from measurements

of a reflected wave incident on them. The relations of these functions will be made precise in the

derivations to follow.

In this chapter we will lay the foundations of the SASL method using certain statistical as-

sumptions about the recorded signals which will make the data easier to use in our image formation

process. The most important assumption will be that the correlation between signals arriving from

different emitters is negligible. This is is the assumption which the MUSIC algorithm and other

similar approaches require in order to image sources without artifacts. Under these conditions we

will build up a backprojection model for the SASL process and then show numerical results for

our method in Chapter 5.

Then, in Chapter 7 we will return to the data model and derive a new form of the expressions

shown in this chapter which do not rely on the statistical assumptions we invoke here. This will

dramatically complicate the effort when the signals emitted from the scene are highly correlated.

We will show that in the case of uncorrelated signals the more complex data model reduces to
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the simpler statistical version derived here and we will examine in depth the impact the additional

terms have on the resulting SASL image.

4.2 Derivation of the SASL Data Model
If a target scene contains some distribution of sources described by the source function j(x, t)

then those sources will produce a field satisfying the scalar wave equation

∇2E − 1

c0

∂E
∂t2

= j(x, t). (4.1)

In the time domain, the statistical structure of the source function j will be of the form

u(x1,x2; t1, t2) = E[j(x1, t1)j(x2, t2)] (4.2)

where E[·] is the statistical expectation and (xi, ti) is the spatiotemporal measurement point for

the field E . The first work in adapting this model to electromagnetic source localization from the

existing literature in acoustics was done by Linzer and Norton. We follow their approach here in

deriving our statistical data model. [11, 12]

We assume that this statistical structure can be considered as stationary over the duration of

fast time measurements so that we can rewrite u as

u(x1,x2; τ12) = u(x1,x2; t1, t2) (4.3)

where τ12 = t1 − t2. This can be thought of physically as an estimation of the time delay of the

reception between a signal at two spatially separated receivers. Furthermore, if we assume that the

field is spatially and temporally incoherent, that is

E[j(x1, t)j(x2, t)] = 0 (4.4)

E[j(x, t)j(x, t′)] = 0 (4.5)
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for x1 6= x2 and t 6= t′, then u(x) may be written as

u(x1,x2; τ12) = V (x1)δ(x1 − x2)b(τ12). (4.6)

This is may be called the separability assumption. Such incoherence will likely not hold in practice

for situations involving scenes with emitters transmitting highly similar waveforms or waveforms

with significant low frequency components. In Chapter 6 we will return to these and other as-

sumptions to examine how they may be relaxed or removed through the use of a non-statistical

model.

In simple terms, we are assuming that signals transmitted from different emitters in the target

scene are not correlated with each other, or that this correlation is weak enough to be neglected.

One expects that in most scenes under surveillance users will not transmit highly correlated wave-

forms since doing so would make it difficult for the users themselves to distinguish between the

signals and thus reduce the effectiveness of the transmitter.

However, it has been shown that making such an assumption, even under measurement cir-

cumstances which severely violate it, does not degrade the fundamental performance of the model

beyond the production of additional artifacts in the data. We will explore these artifacts and what

can be done to mitigate their effects in Chapter 7. [11]

Furthermore, as we shall see below, this model can also be viewed from the perspective that one

receives and records the signals from target emitters “one at a time," correlates them separately,

and superimposes the result. As such the model remains an accurate representation of the data

recorded for even highly correlated signals if an a priori method, such as voice recognition, exists

for separating the data recorded from different sources in the scene.

By Fourier transform, the equivalent formulation of equation (4.6) in the frequency domain is

given by

U(x1,x2; f) = V (x1)δ(x1 − x2)B(f) (4.7)
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In practice of course, we do not have knowledge of j(x, t) and so we must use field measurements

to estimate any quantities derived from it. We approximate the function u(x1,x2; τ12) with the

cross correlation of two field measurements Ê(x1, t) and Ê(x2, t+ τ12) given by

û(x1,x2; τ12) =

∫
Ê(x1, t)Ê(x2, t+ τ12)dt. (4.8)

In order to form a SAR-like data model which will allow for the formation of SAR-like im-

ages, we introduce a windowing function, h(t − s), which separates the recorded data into time

segments of duration T . The length of T is then taken to be the length of one look at the scene.

The data separated in this way is then treated as a single, ‘slow time’, data collection point. The

measurements within one such slow time collection are measured in ‘fast time.’ So that slow time

records the inter-look duration while fast time records the intra-look durations between instanta-

neous samples.

In theory h is a smooth cut-off function which takes the value 1 on the interval [0, T ] and 0

outside of it. In practice a variety of smooth windowing functions are available and the optimal

choice may vary depending on a variety of factors. Use of a Hamming or Tukey window is common

in signal processing as these windows lower the effect of signal sidelobes and lead to a reduction

in numerical processing artifacts while also possessing desirable Fourier transform properties. [36]

We also introduce the notation γ1(s) and γ2(s) which denote the slow time measurement po-

sitions along the flight paths of our two receivers. We assume γ1, γ2 are known deterministic

functions.

To visually simplify the resulting calculations, with a sight abuse of notation, we write

s1(s, t) = Ê(γ1(s), t)) (4.9)

so that s1(s, t) is the signal measurement received at the first receiver at position γ1(s) and fast

time t. We then have the time domain data model given by
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d(s, t) = s1(s, t) ? s2(s, t) =

∫
s1(s, τ)s2(s, t+ τ)h(τ − s)dτ (4.10)

where ? is an operator denoting the windowed cross correlation. For more on the cross correlation

function and its Fourier transform see Appendix A.

Taking the Fourier transform of (4.10) with respect to t we obtain an expression for our ap-

proximation to U(x1,x2; f), the frequency domain representation of the data. The result, denoted

by D, is also known as the power spectral density. [11, 12]

Here we have

D(s, f) = E
[
S̄1(s, f)S2(s, f)

]
(4.11)

where Si(s, f) = F{si(s, t)}.

Recall from the previous chapter that

E(y, f) =

∫
G(y − x, f)J(x, f)dx. (4.12)

We therefore write

Si(s, f) =

∫
G(γi(s)− x, f)J(x, f)dx. (4.13)

Substitution into equation (4.11) produces

D(s, f) = E
[∫

Ḡ(γ1(s)− x, f)J̄(x, f)G(γ2(s)− x′, f)J(x′, f)dx′dx

]
(4.14)

=

∫
Ḡ(γ1(s)− x, f)G(γ2(s)− x′, f)E

[
J̄(x, f)J(x′, f)

]
dx′dx. (4.15)

However,

E
[
J̄(x, f)J(x′, f)

]
= U(x,x′; f) = V (x)δ(x− x′)B(f), (4.16)

so
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D(s, f) =

∫
Ḡ(γ1(s)− x, f)G(γ2(s)− x′, f)V (x)δ(x− x′)B(f)dx′dx (4.17)

=

∫
Ḡ(γ1(s)− x, f)G(γ2(s)− x, f)V (x)B(f)dx. (4.18)

Substituting in our expression for G(x, f) from Chapter 3 we have

D(s, f) =

∫
ei2πf |γ1(s)−x|/c0

4π|γ1(s)− x|
e−i2πf |γ2(s)−x|/c0

4π|γ2(s)− x|
V (x)B(f)dx (4.19)

=

∫
ei2πfr(s,x)/c0

(4π)2|γ1(s)− x||γ2(s)− x|
V (x)B(f)dx (4.20)

where r(s,x) = |γ1(s)−x|− |γ2(s)−x|. Here B(f) is assumed known and V (x) is the unknown

spatial dependence which we are attempting to image through field measurements. AlthoughB(f)

is not known in practice it can be estimated directly from the power spectrum of the recorded

signals. We will return to this estimation in Chapter 7. [11]

Under these assumptions the time domain form of the data model may be written as

d(s, t) =

∫
ei2πf(t−r(s,x)/c0)A(s,x)V (x)dfdx (4.21)

where

A(x, s, f) =
B(f)

(4π)2|γ1(s)− x||γ2(s)− x|
(4.22)

4.3 The Case of a Single Emitter in the Scene
We can obtain some insight into equation (4.21) by examining the simple case in which the

scene consists of a single transmitter located at the point x0 radiating a waveform p(t). For this

case our source function is given by

j(x, t) = p(x, t)δ(x− x0). (4.23)

Our data model is then
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D(s, f) =

∫
Ḡ(γ1(s)− x, f)G(γ2(s)− x′, f)E

[
J̄(x, f)J(x′, f)

]
dx′dx (4.24)

=

∫
Ḡ(γ1(s)− x, f)G(γ2(s)− x′, f)E

[
P̄ (x, f)P (x′, f)δ(x− x0)δ(x′ − x0)

]
dx′dx (4.25)

=

∫
Ḡ(γ1(s)− x, f)G(γ2(s)− x′, f)P̄ (x, f)P (x′, f)δ(x− x′)dx′dx (4.26)

=

∫
ei2πfr(s,x)/c0

(4π)2|γ1(s)− x||γ2(s)− x|
|P (x, f)|2 dx. (4.27)

By Fourier transform the corresponding time domain model is

d(s, t) =

∫
ei2πf(t−r(s,x)/c0) [p(s, t) ? p(s, t)]

(4π)2|γ1(s)− x||γ2(s)− x|
dfdx. (4.28)

where, p(s, t) ? p(s, t) is an autocorrelation of the recorded signal. In this way we see that, in

the case of a single emitter, the data model consists of the cross correlation of the transmitted

waveform and propagation factors associated with the transmission of the electromagnetic wave to

the receivers.

4.3.1 Multiple Transmitters

We can expand upon this by considering a scene in which many point-like transmitters are

present. We consider a scene in which N such transmitters emit signals recorded by the two

receivers. Our source function is then given by

j(x, t) =
N∑
n=1

pn(x, t)δ(x− xn). (4.29)

The expectation function of (4.29) in our data model is then

E [j̄(x, f)j(x′, f)] = E

[
N∑
n=1

p̄n(x, t)δ(x− xn)
N∑
m=1

pm(x′, t)δ(x′ − xm)

]
(4.30)

= E

[
N∑
n=1

p̄n(x, t)pn(x′, t)δ(xn − x′) +
N∑
n=1

∑
m 6=n

p̄n(x, t)pm(x′, t)δ(x− xn)δ(x′ − xm)

]
(4.31)
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The effect of the assumption of signal incoherence which we have made above amounts in this

case to assuming that the effect of the “cross terms" on the expectation function can be neglected.

We thus have the sum of cross correlations of each of the transmitted waveforms as the basis of our

derived data model. As previously mentioned, we will return to examine the effect of a non-zero

contribution of the cross term sum

N∑
n=1

∑
m 6=n

p̄n(x, t)pm(x′, t)δ(x− xn)δ(x′ − xm) (4.32)

in Chapter 7. Now that we have formulated a model for the data recorded from a scene of interest

we turn to the problem of constructing an image of the source intensity function.

4.4 Backprojection and Analysis of The Imaging Operator
In order to image the source intensity function V (x) we apply a backprojection operator as

seen in Section 3.1.5. Thus we have

I(z) = K[d](z) =

∫
ei2πf(t−r(s,z)/c0)Q(z, s, f)d(s, t)dfdsdt (4.33)

=

∫
e−i2πfr(s,z)/c0Q(z, s, f)D(s, f)dfds (4.34)

We may now turn our attention to an analysis of the imaging operator K and to the determination

of the filter Q to be applied.

Carrying out the Fourier transform in the time domain version of the data model derived in Eqn

(4.21) we find,

D(s, f) =

∫
ei2πfr(s,x)/c0A(x, s, f)V (x)dx (4.35)

substitution into (4.34) produces:

I(z) =

∫
ei2πf [r(s,x)−r(s,z)]/c0Q(z, f, s)A(x, s, f)V (x)dxdfds. (4.36)
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We can rewrite this expression as

I(z) = L [V ] (z) =

∫
L(z,x)V (x)dx (4.37)

where

L(z,x) =

∫
ei2πf(r(s,x)−r(s,z))Q(z, f, s)A(x, s, f)dfds. (4.38)

In the mathematics community L is referred to as the Point Spread Function (PSF) while in the

engineering parlance the term ambiguity function is more common. We will use the mathematics

convention in this dissertation.

The point spread function is fundamentally a description of how blurred out a point in the scene

becomes when it is imaged via the FBP technique. Under ideal circumstances we would desire to

have L approximate the action of a delta function as nearly as possible.

That is, we would like to have

L(z,x) ≈ δ(z− x) =

∫
ei2π(z−x)·ξdξ (4.39)

If L were exactly the delta function the image reconstruction would be perfect. Our goal in this

analysis will be to apply an appropriate change of variables followed by a judicious choice of the

filter Q in order to make the relationship in (4.39) as close to equality as possible.

To determine how closely L matches the ideal delta function we apply a stationary phase anal-

ysis in s and f to the PSF to determine the critical points which contribute the bulk of the integral’s

value. A more detailed look at the method of stationary phase is presented in Appendix B.

The points at which the phase of L is stationary are those for which,

∂f

(
f

c0

[r(s,x)− r(s, z)]

)
:= 0⇒ r(s,x) = r(s, z) (4.40)

∂s

(
f

c0

[r(s,x)− r(s, z)]

)
:= 0⇒ h(s,x) = h(s, z) (4.41)
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where

h(s,x) =
f

c0

(
(γ1(s)− x)

|γ1(s)− x|
· γ̇1(s)− (γ2(s)− x)

|γ2(s)− x|
· γ̇2(s)

)
(4.42)

The first condition amounts to a restriction that the points x and z must lie on the same line of

TDOA while the second equation is a condition on the Frequency Difference of Arrival (FDOA)

of the two points.

One solution of (4.40) and (4.41) is, the point x = z, that is those points in image space which

correspond to the same location in the scene. As we saw in the case of the monostatic reconstruc-

tion process in Figure 3.4, whether additional critical points exist is determined by factors relating

to the physical geometry of the platform and the antenna beam patterns. For the present consider-

ation we will assume that the collection apparatus is aligned in such a way that x = z is the only

critical point satisfying (4.40) and (4.41). We will return to justify this assumption in Chapter 7.

In order to force the phase of L to match that of the delta function in a region around x = z we

apply the Stolt change of variables which is defined as

(f, s)→ ξ =
f

c0

Ξ(s,x, z) (4.43)

where we have defined

Ξ(s,x, z) =

∫ 1

0

∇r(s, z + µ(x− z))dµ (4.44)

For a detailed justification of the Stolt change of variables see Appendix C. [2]

Applying this change of variables allows us to make the substitution r(s,x) − r(s, z) = c0
f
ξ ·

(x− z) in the phase of L which results in

L(x, z) =

∫
ei2πξ·(x−z)Q(z, f(ξ), s(ξ))A(x, s(ξ), f(ξ))η−1dξ (4.45)

where

η−1 =

∣∣∣∣∂(f, s)

∂ξ

∣∣∣∣ (4.46)
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is the reciprocal of η =
∣∣∣ ∂ξ
∂(s,f)

∣∣∣ which is referred to as the Beylkin determinant for the PSF. [2, 29]

A more detailed analysis of this factor and how it is implemented in the numerical simulations

can be seen in Appendix D.1.

Thus, an approximate expression for the image I(z) formed by application of the FBP operator

K is given by

I(z) ≈
∫

exp [i2πξ · (x− z)]Q(z, f(ξ), s(ξ))A(x, s(ξ), f(ξ))|η−1|V (x)dxdξ (4.47)

We may interpret this expression, not as a formula from which the image will be computed but

rather as a useful approximation on which to base our choice of the filter Q. It is this task to which

we now turn.

4.4.1 Determination of Q and the Reconstruction Formula

Our determination of the filter Q is informed by our desire to have the PSF match the form of

a delta function in the region of x = z. In (4.47) we have already matched the phase of the delta

function. We would like for the rest of the integrand of (4.47) to multiply out to 1. That is, we

would like to choose Q in such a way that it is the reciprocal of the rest of the combined elements

of the integrand.

Two problems with this choice exist. First, Q is a function of z while A is a function of x.

Secondly, there are large regions in which the function A is zero. These include areas of the scene

which are outside the antenna beam and those frequencies which are outside the frequency band

of the receiving antenna. [2]

Since the leading order contribution to the integral comes from those points for which x = z

we can approximateA(s, f,x) byA(s, f, z). We thus defineQ in terms of the value ofA evaluated

at the image point z rather than the scene point x.

We solve the division by zero problem by introducing a function χ which acts as a smooth cut

off function preventing division by zero. Here χ(s, f, z) =

 1 ξ ∈ Ω

0 ξ /∈ Ω
where Ω = {ξ | A(s, f, z) 6= 0}.
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Here Ω is known as the data collection manifold. Using χ and our approximation to A our choice

of Q is then

Q(f, s, z) =
χ(s, f, z)

A(s, f, z)
η =

χ(s, f, z)A∗(s, f, z)

|A(s, f, z)|2
η (4.48)

Substitution of (4.48) into (4.34) produces the following reconstruction formula based on the col-

lected data

I(z) =

∫
e−i2πfr(s,z)/c0

χ(z, s, f)A∗(z, s, f)

|A(z, s, f)|2
ηD(s, f)dfds (4.49)

We now turn our attention to numerical simulations of example scenes of interest.
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Chapter 5

NUMERICAL SIMULATIONS

5.1 Introduction and Approximations
Here we consider a series of numerically simulated test cases. We simulate the reception of

signals from a target scene of interest at two platforms as described in chapter 4 and form the

back projection image from the resulting cross correlated data. For computational simplicity we

consider a two dimensional case in which the receivers travel in the same plane as the emitters.

In chapter 8 we will examine how a three dimensional data collection geometry relates to the two

dimensional examples simulated here and simulate a three dimensional data collection.

Figure 5.1: The data collection geometry

In this chapter we will consider a bistatic geometry in which the first receiver is stationary

throughout the data collection process. That is, we take γ1(s) ≡ (γ1x, γ1y) for all s where γ1x, γ1y

are constants. The second receiver travels along a straight line flight path which, for simplicity, we

take to be the x-axis.

The target scene is a 2km ×2km region at a 10km stand off distance from each receiver at the

nearest point of their flight paths. This situation is illustrated in Figure 5.1. In this image the center

dots correspond to emitter locations and the red circles at the bottom of the image and the one red
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circle at the top are the slow time locations along the flight path of the receivers. In the following

images we will show images displaying only the center square in which the emitters are located.

We begin by examining the reconstruction of RF emitters which are transmitting various chirped

waveforms. A chirp is the most commonly used radar waveform. Radars operate most efficiently

when transmitting constant amplitude signals and a chirp is a constant amplitude signal whose

frequency varies linearly over time. [2]

A chirp therefore takes the form

p(t) = ei2π(fmint+αt
2/2)u[0,T ] (5.1)

where α is the chirp rate and u[0,T ] is a cut off function which is 1 in the range t ∈ (0, T ) and 0

outside of it. Here T is the length of time the radar is transmitting. If T0 is the length of time for

which the radar is turned off before it begins transmitting again the ratio T/(T + T0) is referred to

as the radar’s duty cycle.

(a) Chirp transmitted at t = 0 (b) The chirp received at γ1(s) (c) The chirp received at γ2(s)

Figure 5.2: The transmitted and received signals

Figure 5.2a shows an example of a transmitted chirped waveform. Figures 5.2b and 5.2c

show the time delayed and attenuated version of the chirp which is received at two spatially sep-

arated receivers. In this example the emitter is located at the center of the target scene at the

point (10km, 10km) and the two receivers are located at γ1(s) = (10km, 20km) and γ2(s) =

(0km, 0km).
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Figure 5.3 shows the result of cross correlating these two received signals. Here we see that

the peak of the cross correlation occurs at the expected TDOA of roughly −13.84µs.

Figure 5.3: The Cross-Correlation of the two recorded chirps

The total data collected from a scene of interest is then the collection of the values of the cross

correlation of the recorded signals for each slow time sample point.

Unless otherwise specified we assume that the moving receiver is traveling at a speed of

200m/s. This is consistent with the air speed of the DC-8 platform used in the joint JPL/NASA

AIRSAR program which collected data from 1988-2004. [37] The sample rate of the fast time data

is approximately 40MHz. We consider only attenuation due to geometric spreading and do not

consider any additional attenuation which may be due to atmospheric effects.

5.1.1 Image Overview

The reconstructed images in this chapter follow the radar engineer’s convention of displaying

reconstructions on a decibel scale with the highest point on the image at 0db. We use the radar

engineers decibel convention which is a 10 log10 scale. This is illustrated in Figure 5.4a and Figure

5.4b.

The resulting image is then cleaned up for improved visualization by setting all values below a

cut off threshold to that threshold. The value of this threshold will be made more precise when the

issue of noisy signals is considered in Chapter 9. Below shows the effect of setting a threshold of

−12db on the image reconstruction. Thus, we are suppressing any contributions which are roughly
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(a) The back-projected image on a linear scale (b) The back-projected image on a db scale

Figure 5.4: The effect of db scaling

15 times weaker than the peak contribution. This effect is shown in Figure 5.5c Heat maps of the

image before and after the conversion to a db scale are shown in Figures 5.5b and 5.5c.

(a) The thresholded db image (b) A heat map of the image on a
linear scale

(c) A heat map of the image on a db
scale

Figure 5.5: db scaling of the SASL image

5.2 Imaging a Single Emitter
The simplest imaging case consists of a single emitter located somewhere in the target scene.

Here we consider the case of an emitter located at the point e1 = (10, 10), where the distance is

measured in km. The receiver in motion flies along a straight line path from (0, 0) to (20, 0) while

collecting 200 evenly spaced samples of the target scene. Our stationary receiver is located at the

point γ2 = (10, 20). In each figure below we see the improvement of the back projected image

as the platform continues to traverse a longer flight path, allowing more data to be back projected

onto the image.

51



In Figures 5.6c, 5.6f, and 5.6i we see clear refinement of the resulting image when additional

data is added to the back projection by means of a longer aperture. However in Figures 5.6l and

5.6o these improvements seem to have reached a point for which continuing to add additional data

does not appear to have nearly as profound an effect on the quality of the resulting image.

Particularly we note the difference in the refinement of the back projection in the range and

cross-range directions. Upon a quick visual examination, the localization of the emitter in the

range direction appears to have reached its limit between 5km and 10km of data, however, the

cross-range improvements continue for another few km. Indeed, in figure 5.6c we note that the

cross-range smearing of the target spans the entire image while the range ambiguity is only about

1km. We will address the question of factors which effect the resolution achievable in our image

in Section 5.4
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(a) The data collected over the first
1km

(b) The surface reconstruction (c) The back projected heat map

(d) The data collected over the first
5km

(e) The surface reconstruction (f) The back projected heat map

(g) The data collected over the first
10km

(h) The surface reconstruction (i) The back projected heat map

(j) The data collected over the first
15km

(k) The surface reconstruction (l) The back projected heat map

(m) The data collected over the first
20km

(n) The surface reconstruction (o) The back projected heat map

Figure 5.6: The backprojected image for various lengths of synthetic aperture.
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5.3 Multiple Emitters
We turn now to the case in which there are several emitters which are located inside our target

scene. Here we consider the case in which we have 9 total emitters in the scene spaced equally

apart in a 2km square scene whose center is 10km from the center of the flight path for the mov-

ing platform. In this example all of the emitters are transmitting chirped pulses with a 20MHz

bandwidth and center frequencies of 40Mhz with a duty cycle of 2× 10−5 seconds. While a scene

containing several equally spaced emitters transmitting perfectly identical waveforms is unlikely

to be encountered in practice this simulation will allow us to gain a basic understanding of the

SASL image which we will build upon in further chapters.

(a) Data from γ2(s) = (0, 0) (b) Data from γ2(s) = (10, 0) (c) Data from the entire flight

Figure 5.7: The cross correlation data for a scene with multiple emitters

In Figures 5.7a and 5.7b we see the cross correlated data for two different points along the

flight path of the moving receiver. In Figure 5.7a there are 9 visually discernible peaks in the data

slice corresponding to the signals received from different emitters in the scene. However, in Figure

5.7b we see only 5.

This occurs because at the first data collection point the two receivers are located such that

the TDOA for each emitter is measurably different. However, midway through the data collection

the moving receiver is located exactly opposite the stationary receiver along the x-axis. Thus a

large number of path lengths from the emitters to the receivers are identical. When two emitters

are located such that the TDOA of the emitted signal is identical for a given slow time step the
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(a) The SASL image of a grid of 9 emitters (b) A 3D mesh of the SASL image

Figure 5.8

contribution to the data due to those emitters cannot be distinguished. Figure 5.7c displays the data

collected over a full 20km flight path.

Applying our backprojection scheme to this data we form the images scene in Figures 5.8a and

5.8b. We see all of the emitters in the target scene have a corresponding peak in the back projected

image which occurs at the correct location in the scene.

Although all of the emitters in this example are reconstructed correctly and no obvious arti-

facts are present, we have chosen a scene in which the emitters are widely spaced geographically

compared to their relative size in the SASL image. Recalling the series of images produced in 5.6

we can ask what parameters affect our ability to distinguish between closely spaced emitters and

whether it matters if they are separated in the range or the cross-range directions. In the follow-

ing sections we will derive a measure of the image resolution and explore the effect that various

parameter changes cause.

5.4 The SASL Image Resolution
We turn now to the consideration of the resolution which is achievable for given data collection

parameters. In Chapter 3 the resolution of a traditional monostatic system was briefly discussed.

As a reminder we saw that, the cross range resolution of such a system is
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∆CR =
λ

4 sin(∆θ
2

)
(5.2)

where R is the range to the target, λ is the wavelength of the transmitted signal, and ∆θ is the

angular interval over which the aperture is synthesized. Recall also that the range resolution was

found to be a function of the signal bandwidth. [35]

Thus the resolution achievable in a traditional SAR image is dependent both on the transmitted

waveform and on the duration of the flight path which synthesizes the aperture. We expect that an

analysis of the resolution of the SASL image reconstruction will demonstrate similar dependencies.

As has been previously mentioned, the resolution which can be attained in a back projection

image is ultimately dependent on the data collection manifold (DCM), that is, the set of data

which is collected by the receiving antenna. The data collection manifold is a region in Fourier

space which is defined by the range of the variables (ξ1, ξ2) in the phase of the data model. [35]

In Chapter 4 we demonstrated that, by appropriate choice of the filter Q and use of the Stolt

change of variables, the leading contribution to the point spread function for a critical point x = z

is

L(z,x) =

∫
ei2π(z−x)·ξdξ (5.3)

where ξ = f
c0

Ξ(s,x, z). In Appendix D.1 it is shown that

Ξ(s, z, z) =

 1 0 ∂ψ/∂z1

0 1 ∂ψ/∂z2

((γ2(s)− z)

|γ2(s)− z|
− (γ1(s)− z)

|γ1(s)− z|

)
(5.4)

so that for the two dimensional system under consideration here we have

 Ξ1

Ξ2

 =

 (γ2x(s)− zx)/R2 − (γ1x(s)− zx)/R1

(γ2y(s)− zy)/R2 − (γ1y(s)− zy)/R1

 (5.5)

where Ri = |γi(s)− z|.
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Figure 5.9: A diagram of the variables associated with one slow time look

Thus, for the particular geometry shown in Figure 5.9, under the change of variables (f, s) →

ξ = f
c0

Ξ(s,x, z) we have

ξ1 =
f

c0

(
cos(θ2(s))− cos(θ1(s))

)
(5.6)

ξ2 =
f

c0

(
sin(θ2(s))− sin θ1(s))

)
(5.7)

where γij and θi are as shown in Figure 5.9.

This provides a useful tool for examining the DCM for this flight path, namely, we can view

changes to the length of the flight path as providing either fewer or more angles of view over

which the target emitter is observed. While the exact angle representation shown here does not

generalize to all possible flight paths, the intuition regarding the effect on the DCM provides a

useful framework for considering this problem moving forward. However, in Chapter 7 we will

see that the size of the DCM is not the only factor impacting the quality of the final image.

The data collection manifold for an emitter located at the scene center, that is (10km, 10km),

transmitting a chirped waveform with a bandwidth of 20MHz and a center frequency of 30MHz,

with receiver flight paths defined in section 5.2 is shown in Figure 3.5a
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We are interested in determining a formula to measure the resolution of a SASL image from

the data collected. Recall that in Chapter 3 we demonstrated that we could find an approximate

formulate for the null-to-null resolution by assuming that the DCM is approximately rectangular

in regions far from the receivers. This allows us to write our expression of the impulse response as

L(z,x) =

∫
ei2π(z−x)·ξdξ ≈

∫
ei2π(z1−x1)ξ1dξ1

∫
ei2π(z2−x2)ξ2dξ2 (5.8)

and thereby consider the range and cross range resolutions separately. We shall begin in section

with a consideration of the cross range resolution.

5.4.1 The Cross Range Resolution

To determine the resolution of the backprojected image in the cross-range direction we consider

a pair of points which differ only in their cross-range, that is azimuthal, coordinate. Then z− x =

(z1 − x1, 0) and so L(z,x) reduces to

L(z,x) =

∫
ei2π(z1−x1)ξ1dξ1 (5.9)

Recalling that ∫ b

−b
eiρxdx =

2 sin(bρ)

ρ
= 2b sinc(bρ) (5.10)

we have the impulse response as

L(z,x) = 2b sinc
(
b2π(z1 − x1)

)
(5.11)

where b is determined by the data collection manifold. Taking the resolution to be the null-to-null

distance we have a resolution of 2π
b

, where b is half the bandwidth of the data collection manifold

in the ξ1 direction. It then remains only to determine b from the data collection manifold, that is,

to determine the range of values of ξ1 which lie in the manifold and therefore contribute to the

integral.
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From (5.6), for a point x = (xx, xy) in the scene, we have

ξ1 =
f

c0

(
(γ2x(s)− zx)/R2 − (γ1x(s)− zx)/R1

)
= λ

(
cos(θ2(s))− cos(θ1(s))

)
(5.12)

since γ1x is constant, the range of ξ1 is determined by the range of γ2x and f . It is clear that the

largest possible range of ξ1, and therefore the best possible resolution would be achieved for values

of θ2 ∈ (−π, π), that is for an infinitely long flight path.

Of course this is impossible for many reasons, not least of which being that as the platform

moves farther away from the emitter, the attenuation of the signal will eventually become too great

for the platform to detect it. Thus we conclude that resolution improves for longer flight paths as

long as the emitter remains within the range of the receiving antenna’s ability to record the signal.

Antenna beam patterns will play a significant role in determining this factor for physical systems.

The range of ξ1 for the data collection described above is then

∆ξ1 =
λ

R

(
max{γ2x(s)} −min{γ2x(s)}

)
=

30× 106 Hz

c0 · 10000m
20000m

(5.13)

where R is the range to the emitter from the center of the synthesized aperture.

Recalling that b is half the range of ξ1 this yields a resolution of

∆CR =
2π

b
≈ 63m. (5.14)

In order to fully understand this number we must recall that the quantities of “range" and

“cross range" resolution are derived with respect to the synthesized aperture. That is, the cross

range resolution is the resolution in the direction orthogonal to the line between the aperture center

and the scene center. As shown in Figure 5.10b, when the synthesized aperture is to the left of the

scene center the cross range direction is not aligned with the x, y axis of the scene as displayed in

Figure 5.22c. The effects of this alignment will become more apparent in a later example.
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(a) A centered and left-centered flight path (b) The In-Range and Cross-Range directions

We can show the how this resolution affects the resulting image by considering what happens

as two emitters in the scene of interest are moved gradually closer together in the cross range

direction.

In Figures 5.11 through 5.13 we see that two emitters are easily separated at 100m, begin to

blur into one another but remain distinguishable at 80m, but ultimately are reconstructed as one

elongated peak at a separation of 60m. This closely matches our expectations based upon the

calculated cross range resolution.

Our expression for the resolution of the reconstructed emitters leads us to the conclusion that we

can improve upon the separability of closely spaced emitters when the emitters transmit waveforms

of higher frequency. We consider the case in which the two emitters under consideration have

identical characteristics as those in Figures 5.11 through 5.13, but transmit at a center frequency of

50MHz, that is, 20MHz higher than the previous case.

We calculate the approximate resolution for a 50MHz center frequency transmitted signal as

∆CR =
2π

b
= 2π

(
50× 106 Hz

2c0 · 10000m
20000m

)−1

≈ 38m (5.15)
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Figure 5.11: A 100m separation

Figure 5.12: An 80m separation

Figure 5.13: A 60m separation
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Figure 5.14: An 80m separation

Figure 5.15: A 60m separation

Figure 5.16: A 40m separation
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which is consistent with the simulations shown in Figures 5.14 through 5.16. In these images

we see that two emitters are easily distinguished at 80m, are still well separated at 60m and are

blurring together significantly at 40m.

We can see the effect that this has on the overall scene reconstruction by examining Figure

5.17. We see that increasing the carrier frequency of the transmitted signals has a marked effect on

the overall image quality of the reconstructed scene.

(a) fc = 20MHz Signal (b) fc = 40MHz Signal (c) fc = 60MHz Signal

Figure 5.17: The image resolution improves with increasing carrier frequency

Carrier frequency is, however, not the only component of the resolution expression. In (5.13)

we see that the data collection manifold is dependent on the range from the synthesized aperture

to the target emitter and on the total length of the synthesized aperture. We will consider how each

of these two parameters impact the resulting image construction.

First we shall look at how the range of aspect angles of the target emmiter which are viewed

by the receiver affects the resulting image we are capable of constructing. We begin by examining

the data collection manifolds for two emitters in the scene with identical characteristics, and which

are both located on the same cross range line in the image, but are separated in range by 1.9km so

that one emitter is significantly closer to the moving receiver than the other. The emitter which is

located closer to the receiver will be viewed by the receiver over a larger collection of angles than

will the emitter which is farther away.

In Figure 5.18 we have the data collection manifolds for two emitters separated by 1.9km in

range. Here we see that the DCM is smaller for the emitter which was viewed from fewer angles,
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that is, the receiver which was farther away from the aperture. The resolution in the backprojected

image for each emitter is calculated to be

∆CR(15, 14) =
2π

b
= 2π

(
30× 106 Hz

2c0 · 9050m
20000m

)−1

≈ 57m (5.16)

∆CR(15, 16) =
2π

b
= 2π

(
30× 106 Hz

2c0 · 10950m
20000m

)−1

≈ 69m (5.17)

The effect on the reconstructed image is shown in Figure 5.19.

Here we have four emitters located symmetrically across from each other along the same cross

range line with the second pair of emitters 1.9km farther away from the synthesized aperture than

the first. We see that, at a separation distance of 70m, the first pair of emitters are distinguishable

in the reconstruction, however the second pair of emitters are not. This is consistent with the

resolution we have derived for this carrier frequency at these ranges.

(a) The DCM for e1 = (10, 8.9) (b) The DCM for e1 = (10, 10.9) (c) The two DCMs overlaid

Figure 5.18: The effect on the DCM of receivers separated in the range direction

As shown in Figure 5.20, the range of angles over which the emitter is viewed is necessarily

smaller for emitters which are farther away from the moving receiver. Thus, an increase in the

range from the synthesized aperture to the target emitter results in a smaller data collection man-

ifold, even if the emitter is visible to the receiving antenna throughout the duration of the data

collection.

If a receiver flies along a flight path for which certain points in the scene of interest are al-

ways much farther away than other points in the scene, any emitters at those locations will be
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Figure 5.19: Emitters nearer the synthesized aperture are reconstructed with better resolution

reconstructed with corresponding lower fidelity than will closer emitters. This occurs because the

receiver has viewed such emitters from fewer angles.

It may be prudent therefore to observe large scenes from flight paths which are curved in order

to increase the number of aspect angles over which all points in the scene are viewed. We return to

this observation in Chapter 9 where the effects of flight path parameters are considered more fully.

Figure 5.20: The range of angles over which data are collected is smaller for emitters farther away

From equation (5.13) it is also clear that the data collection manifold, and therefore the cross

range resolution of the backprojected image, is dependent on the length of the flightpath. Thus

shorter flight paths lead to smaller DCMs and therefore to lower resolution images. This can also

be thought of in the context of Figure 5.20. Shorter flight paths lead to fewer angles over which the

emitter is viewed, and therefore to a smaller data collection manifold and worse resolution. This is
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essentially the effect which we had already observed taking place in the images of Figure 5.6. We

can now make these observations precise.

In the above reconstructions we have observed the images achievable with data collected from a

flight path of 20km for which the synthesized aperture is centered on the the scene center. We now

consider how a shorter flight path reduces the image quality. We first consider the backprojected

image which results in a flight path one quarter as long at that previously considered.

For a 30MHz carrier frequency emitter observed from a flight path of just 5km we have

∆CR(10, 10) =
2π

b
= 2π

(
30× 106 Hz

2c0 · 10000m
5000m

)−1

≈ 251m. (5.18)

Whereas for the same emitter observed from a 20km flight path the cross range resolution is

∆CR(10, 10) =
2π

b
= 2π

(
30× 106 Hz

2c0 · 10000m
20000m

)−1

≈ 63m. (5.19)

In Figure 5.21 we see how two emitters located 200m are well separated in the image created using

the data from a 20km long data collection flight but are blurring into a single peak when imaged

using the data from a flight path of only 5km.

This matches the experience we have developed already, namely, that longer flight paths pro-

duce a longer synthetic aperture from which we image our scene. As was first discussed in Chapter

3, the longer the aperture size the better the cross range resolution achievable in the resulting im-

age. We are now simply able to put a number to this intuitive understanding which allows us to

grasp a quantitative understanding of the magnitude of this effect.

While we understand that the aperture length affects the cross range resolution according to

equation (5.13), our previous analysis of this equation assumed that the flight path was always

centered on the scene center. A natural extension of our analysis so far is to answer the question:

what affect will be had on the image if the synthesized aperture is off center from the scene under

surveillance?
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Figure 5.21: Shorter flight paths produce less resolved images

In Figure 5.22 we see the effect of having a short flight path which is not centered on the scene

center. In Figure 5.22b we have an image created from the data gathered along a 5km flight path

in which the moving receiver traverses the points γ2(s) = (7.5, 0) to γ2(s) = (12.5, 0). This is

contrasted with the image in Figure 5.22c which is created using the data gathered along the flight

path γ2(s) = (0, 0) to γ2(s) = (5, 0).

The data collection manifold for the emitter located in the scene center is shown for each of

these cases in figures 5.22d through 5.22f. For clarity, the data collection geometries for both the

centered and the left centered flight paths described are diagramed in Figure 5.10a.

Despite using data collections of the same total length we find: in the left centered image the

emitters are not reconstructed as well as in the centered image, and the reconstructed emitters

appear skewed with respect to the x, y axis. Both of these effects can be explained by returning to

equation (5.13). The calculated cross range resolutions for each of the flight paths described here

are

centered→ ∆CR(10, 10) =
2π

b
= 2π

(
30× 106 Hz

2c0 · 10000m
5000m

)−1

≈ 251m (5.20)

left centered→ ∆CR(10, 10) =
2π

b
= 2π

(
30× 106 Hz

2c0 · 12500m
5000m

)−1

≈ 314m. (5.21)

Since the left centered flight path synthesizes an aperture whose center is farther away from the

scene center the number of angles which are viewed by the receiver is less. As a result the overall
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(a) SASL Image for a 20km flight
path

(b) SASL Image for a centered 5km
flight path

(c) SASL Image for a left centered
5km flight path

(d) A 20km flight path (e) A centered 5km flight path (f) A left centered 5km flight path

Figure 5.22: The backprojected images from different data collections

resolution of the image is negatively impacted. This is shown graphically in Figure 5.10a. The left

centered flight path shown in red records data over a smaller range of angles than does the centered

blue path. This narrows the data collection manifold as seen in Figures 5.22e and 5.22f.

Furthermore, as we previously made note of in our discussion of figures 5.10a and 5.10b, the

cross range direction is dependent on the orientation of the flight path of the receiver. When the

flight path is to the left of the scene center the cross range direction is not aligned with the x, y

axis of the scene. Thus the reconstructed emitters have a skewed appearance in the resulting SASL

image.

As a final note on the achievable cross range resolution for target emitters of interest we con-

sider the resolution for an FM radio broadcast tower. In the United States such towers operate

with center frequencies in the 88MHz to 108MHz range with a bandwidth of 200kHz. The cross

range resolution of a station operating on the frequency 95.0 FM is then ∆CR(10, 10) ≈ 20mwhen

imaged from a 20km flight path at a range of 10km to the radio tower which we take to be at or

near the scene center. [38]
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5.4.2 The Range Resolution

We turn now to the other component of the image quality, the range resolution. From our

argument in section 5.4 the range resolution of the constructed SASL image is determined by the

range of

ξ2 =
f

c0

(
(γ2y(s)− zy)/R2 − (γ1y(s)− zy)/R1

)
=
f

c0

(
sin(θ2(s))− sin θ1(s))

)
(5.22)

where Ri = |γi(s) − z| and θi is as shown in Figure 5.9. For the flight path described above we

have γ2y and γ1y constant. Furthermore, noting that, as in (5.13) we use the distance to the scene

center from the midpoint of the synthesized aperture for |γi(s)− z|, we see that the measure of the

resolvability of target emitters in the range direction is dependent upon the range of values of f ,

that is, on the bandwidth of the transmitted waveform.

For the data collection geometry in Figure 5.9 and assuming the use of a baseband signal, that

is, one for which fmin = 0 we have

max{ξ2} =
fmax
c0

RT =
2fmax
c0

(5.23)

min{ξ2} =
fmin
c0

RT = 0 (5.24)

for a point at the scene center, where RT = R1R2

R2(γ1y−zy)−R1(γ2y−zy)
is the total range dependence.

Taking max{ξ2} and min{ξ2} as our limits of integration we have

∫ 2f
c0

0

ei2π(z2−x2)ξ2dξ2 =
e2πi2f/co(z2−x2) − e0

2πi(z2 − x2)
(5.25)

=
e2πi2fc/co(z2−x2)+2πi2Bw/co(z2−x2) − e2πi2fc/co(z2−x2)−2πi2Bw/co(z2−x2)

2πi(z2 − x2)
(5.26)

= e2πi2fc/co(z2−x2) sin(4πBw(z2 − x2)/c0)
1

π(z2 − x2)
(5.27)

= e2πi2fc/co(z2−x2) 4Bw

c0

sinc(4πBw(z2 − x2)/c0) (5.28)
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(a) A 50m separation (b) A 45m separation (c) A 40m separation

Figure 5.23: The resolvability of emitters transmitting a 20Mhz bandwidth chirp

Where Bw is the bandwidth of the transmitted signal. Noting that |e2πi2fc/co(z2−x2)| = 1 we

have that b = 2Bw/c0. Thus the resolution in the range direction for a baseband signal for which

Bw = fmax is ∆IR ≈ 2πc0
2fmax

. Generalizing to non-baseband signals we have that the resolution in

the range direction is then

∆IR ≈
πc0

Bw

. (5.29)

For the data collection geometry in Figure 5.9 and a 20MHz bandwidth we have

∆IR(10, 10) =
πc0

20× 106
≈ 47m. (5.30)

In Figure 5.23 we see that two emitters transmitting a 20MHz signal are resolvable at a in range

separation of 50m, blurring at 45m and completely indistinguishable by 40m, which is consistent

with our resolution calculation.

Similarly in Figure 5.24 we see that emitters which are transmitting a higher bandwidth signal,

in this case a 30MHz chirp, are resolvable at closer distances. In Figure 5.24a we see that the

emitters are easily separable at 45m. In 5.24b we see that they remain distinguishable but are

beginning to blur together at 37m. Finally in 5.24c once a 30m separation is reached the two

appear as one peak.
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(a) A 45m separation (b) A 37m separation (c) A 30m separation

Figure 5.24: The separability of emitters transmitting a 50Mhz chirp

These results are consistent with the calculation that the range resolution is given by

∆IR(10, 10) =
πc0

30× 106
≈ 31m (5.31)

Just as we saw for the cross range case, the greater resolution in the range direction is due to a

larger data collection manifold. This is easily seen in Figure 5.25. It is clear that the signal with

the larger bandwidth produces a much wider DCM which, as we have seen, leads to finer resolution

images.

(a) A 20MHz bandwidth (b) A 30MHz bandwidth

Figure 5.25: The DCM for two chirp signals with fc = 30MHz

Now that the concept of image resolution has been thoroughly considered in the ideal case we

can begin to examine the effects of the cross terms on our images.
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Chapter 6

A NON-STATISTICAL MODEL FOR SASL

6.1 Introduction
We now return the various assumptions made in Chapter 4. There, we assumed certain sta-

tistical properties about the transmitted signals. Most notably we assumed that the contribution

of cross term correlations in the data are either negligible or else, that the signals from different

emitters can be separated prior to the calculation of the cross correlation.

Each receiver records the superposition of the waves incident on it at any given fast time step.

Therefore, it is not trivial, and indeed it can be quite difficult or even impossible, to determine

the contributions that each emitter in the scene makes to the recorded signal a priori. Often, addi-

tional information about the signals in the scene is needed in order to perform any kind of signal

separation before localization. Furthermore, although we expect the sources in a typical scene to

be uncorrelated, there may be scenes of interest which contain highly correlated sources that we

desire to image.

Thus, we seek to perform the cross correlation operation without any a priori separation under

conditions in which various emitters are, or could be, highly correlated. Doing so increases the

difficulty of the reconstruction. Our previous data model took the form of the superposition of the

cross correlation matrices for the signal transmitted from each emitter. This assumed that the data

from each emitter could be separated a priori from all of the others which, as we have said, is

unlikely to be true for highly correlated sources.

In broad terms, our current model will take the form of the cross correlation of the superposition

of the data recorded from each emitter. That is,

dold(s, t) =⇒
∑
i

S
(1)
i (s, t)?S

(1)
i (s, t) vs. dnew(s, t) =⇒

∑
i

S
(1)
i (s, t)?

∑
j

S
(2)
j (s, t) (6.1)
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where ? denotes the cross correlation and S(k)
i is the signal recorded at the kth receiver due to the

ith emitter.

We shall proceed to derive a fresh model of the data in terms of the cross correlation of two

received signals without considering the expectation of the source terms. This will allow us to

separate the contribution to the data of the correlation of an emitted signal at one receiver with its

counterpart recorded at the other receiver from those contributions which arise from the correlation

of an emitted signal recorded at one receiver with a different signal recorded at the other receiver.

Previously we have assumed that such correlations are negligible.

Let Si(t) be the signal recorded at the ith receiver. Then

S1(x, t) =

∫ j
(
y, t− |x−y|

c0

)
4π|x− y|

dy (6.2)

=

∫
e2πif |x−y|/c0e−2πift J(y, f)

4π|x− y|
dydf (6.3)

S2(x′, t) =

∫
e2πif ′|x′−y′|/c0e−2πif ′t J(y′, f ′)

4π|x′ − y′|
dy′df ′ (6.4)

where j(y, t) is the source function for an emitter located at y of the scalar wave equation

(
∇2 − 1

c2
0

∂

∂t2

)
E(x, t) = j(y, t) (6.5)

describing the electromagnetic waves created by a distribution of sources in the scene of interest

and (x, t), (x′, t) are the two spatiotemporal locations at which the signals are recorded.

We then take our data collected from the scene to be the cross correlation of these two signals.

That is
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d(x,x′, t) =

∫
e

2πif
(
τ− |x−y|

c0

)
e
−2πif ′

(
t+τ− |x

′−y′|
c0

)

× J̄(y, f)J(y′, f ′)

(4π)2|x− y||x′ − y′|
dydy′dfdf ′dτ

(6.6)

=

∫
e
−2πif

(
|x−y|
c0

)
e
−2πif ′

(
t− |x

′−y′|
c0

)

× J̄(y, f)J(y′, f ′)

(4π)2|x− y||x′ − y′|
dydy′dfdf ′

∫
e2πiτ(f−f ′)dτ.

(6.7)

Performing the τ and f ′ integration we have

d(x,x′, t) =

∫
e
−2πif

(
|x−y|
c0

)
e
−2πif ′

(
t− |x

′−y′|
c0

)
J̄(y, f)J(y′, f ′)

(4π)2|x− y||x′ − y′|
δ(f − f ′)dydy′dfdf ′ (6.8)

=

∫
e
−2πif

(
|x−y|
c0

)
e
−2πif

(
t− |x

′−y′|
c0

)
J̄(y, f)J(y′, f)

(4π)2|x− y||x′ − y′|
dydy′df (6.9)

=

∫
e
−2πif

(
t+
|x−y|
c0
− |x
′−y′|
c0

)
J̄(y, f)J(y′, f)

(4π)2|x− y||x′ − y′|
dydy′df. (6.10)

As in Chapter 4 we apply the start-stop approximation. That is, we assume the measurement

points x,x′ can be considered stationary throughout the duration of one “look" of time T . As

seen previously this can be accomplished mathematically by application of a windowing function.

Taking as before γ1(s) and γ2(s) to be the slow time functions of our receiver locations we can

rewrite the data expression above as

d(s, t) =

∫
e−2πif(t−r(s,y,y′)/c0)J̄(y, f)J(y′, f)A(s,y,y′)dydy′df. (6.11)

where

r(s,y,y′) = |γ2(s)− y′| − |γ1(s)− y| (6.12)

and A(s,y,y′) accounts for geometric spreading factors and windowing. If the field being mea-

sured is due to a single antenna radiating an EM field as the result of a signal sent to it then the

source function takes the form

J(x, f) = P (f)g(x). (6.13)
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In the case of a radar, g(x) is the time derivative of the current distribution over the antenna and

P (f) is the waveform sent to the antenna. As discussed previously, the particular waveform sent

to the antenna can take a wide variety of forms, however a chirped waveform is the most common

in radar transmission. [2, 30]

Thus, in the case of a single radiating antenna present in the scene our data takes the form

d(s, t) =

∫
e−2πif(t−r(s,y,y′)/c0)A(s,y,y′)P̄ (f)g(y)P (f)g(y′)dydy′df. (6.14)

We assume that the antenna can be treated as a point source so that g(y) = δ(x0 − y) where x0

is the antenna location. Whenever the physical radiating source is smaller than the resolution of

the SASL image this approximation should not degrade image quality. As seen in Chapter 5, the

resolution achieved when imaging a US FM radio tower is on the order of 30m. The physical

footprint of such a tower is typically on the order of meters.

Under this approximation we have

d(s, t) =

∫
e−2πif(t−r(s,y,y)/c0)A(s,y,y)P̄ (f)P (f)δ(y − x0)dydf (6.15)

=

∫
e−2πif(t−r(s,y,y)/c0)A(s,y,y)|P (f)|2V (y)dydf. (6.16)

This matches the form of the data model derived for a single emitter under the previous as-

sumptions.

We now consider the form of the data when multiple emitters are present. To do so we ex-

tend our previous source function to the case of N point-like emitters each transmitting its own

waveform. We thus have

J(x, f) =
N∑
n=1

Pn(f)δ(x− xn) (6.17)

where xn is the location of the nth receiver. Our data is then modeled by
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d(s, t) =

∫
e−2πif(t−r(s,y,y′)/c0)A(s,y,y′)

×
N∑
n=1

P̄n(f)δ(y − xn)
N∑
m=1

Pm(f)δ(y′ − xm)dydy′df.

(6.18)

We can then separate the contribution to the data from those terms which are the correlation of

the two copies of a signal from one emitter recorded at each platform and those terms which result

from the correlation of two signals which were emitted from different points in the scene. Doing

so produces

d(s, t) =

∫
e−2πif(t−r(s,y,y′)/c0)A(s,y,y′)

(
N∑
n=1

P̄n(f)δ(y − xn)Pn(f)δ(y′ − xn)

+
N∑
n=1

∑
m6=n

P̄n(f)δ(y − xn)Pm(f)δ(y′ − xm)

)
dydy′df.

(6.19)

=

∫
e−2πif(t−r(s,y,y)/c0)A(s,y,y)

N∑
n=1

|Pn(f)|2δ(y − xn)dydf

+

∫
e−2πif(t−r(s,y,y′)/c0)A(s,y,y′)

N∑
n=1

∑
m 6=n

P̄n(f)Pm(f)δ(y′ − xm)δ(y − xn)dydy′df.

(6.20)

= dD(s, t) + dC(s, t) (6.21)

where

dD(s, t) =
N∑
n=1

∫
e−2πif(t−r(s,y,y)/c0)A(s,y,y)|Pn(f)|2δ(y − xn)dydf (6.22)

is the data due to the correlation of each emitted signal with itself. Here we have chosen the

subscriptD to denote the fact that these are the diagonal terms as opposed to the off diagonal cross

terms. These diagonal terms may be thought of as the “correct" emitter data, or the data we would

collect if there were no correlation between signals emitted from different sources. Equivalently,

these terms are the data we would record if we were able to separate the data contributions from

each emitter before the correlation operation was performed. The second term
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dC(s, t) =

∫
e−2πif(t−r(s,y,y′)/c0)A(s,y,y′)

N∑
n=1

∑
m 6=n

P̄n(f)Pm(f)δ(y′ − xm)δ(y − xn)dydy′df

(6.23)

is then the contribution of the cross terms, that is, those terms wherein a signal from one emitter is

cross correlated with the signal from a different emitter. In our previous model we had essentially

assumed dC(s, t) = 0. As previously argued, this is likely a good approximation for scenes which

can be assumed to contain a variety of emitters transmitting fairly dissimilar signals. However, as

we shall see, this model fails to capture reality when highly correlated signals may be present in

the target scene.

Our current goal is to consider these cross terms and to make definite statements regarding

their contribution to the image under a wide variety of situations. We first motivate this discussion

with a few numerical examples. Here we record the signals from several emitters in the scene at

each receiver. We then cross correlate the superposition of all such received signals. Finally we

backproject the resulting data using our previously derived imaging operator, that is, the operator

we constructed assuming that the cross term contribution to the data is zero in each case.

6.2 Numerical Examples
First we consider the case in which the transmitted signals are dissimilar, having different band-

widths, center frequencies, and duty cycles. In this first example we have a scene which contains

nine emitters transmitting signals with center frequencies in the range of 10MHz to 50MHz and

bandwidths between 10MHz and 20MHz. We display the resulting data and backprojected im-

ages for this scene which result from two differing data collections. First we use our previous

model for the data collection, that is assuming the signal contributions are separable before any

processing is done. Second, we process the more general model for which we assume such sep-

aration is impossible a priori. The resulting images are displayed side by side in figures 6.1a and

6.1b.
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The leftmost figure shows the result when our simulation performs the correlation prior to

the superposition of the signals, that is assuming that the signals can be separated in the data

a priori, thus ensuring that dC(s, t) = 0 by construction. The right hand simulation performs

the superposition of the signals prior to the correlation so that our data takes the form d(s, t) =

dD(s, t) + dC(s, t) where dC(s, t) is not necessarily zero.

First, we have the recorded forward data sets shown side by side in Figure 6.1. Here it is imme-

diately apparent that when the contribution of the individual emitters cannot be separated a priori

the resulting data set is messier and more cumbersome. Indeed in Figure 6.1a the curves of the

data from individual emitters are visually discernible along the edges and visual inspection alone

suggests the presence of nine emitters in the scene. In Figure 6.1b however, no such conclusions

can be drawn due to the presence of the cross term artifacts.

(a) Assuming separability (b) Cross correlating without separation

Figure 6.1: The total data set for each case

The resulting backprojected images are shown in Figures 6.2a and 6.2b. Here we find that,

despite including the contribution to the data set which arises from correlation of different emitters

in the scene, the resulting image remains highly accurate with few additional artifacts.

We conclude from this that the prior assumption that the cross terms can be neglected is a fair

one for situations in which the emitters in a target scene transmit waveforms which are relatively

dissimilar in bandwidth, carrier frequency, and so forth.
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(a) Assuming separability (b) Cross correlating without separation

Figure 6.2: The backprojected image of the target scene

Recall that we have argued previously that this assumption should accurately reflect the situa-

tion in many target scenes. We expect that operators of any emitters in a scene will intentionally

transmit waveforms which are different from those transmitted by other operators in the same scene

in order to distinguish their own signals from the signals of the surrounding emitters. Were they

to do otherwise the utility of their own signals to whatever use they are employing them would be

limited.

However, we may ask how the reconstructed image is impacted when several emitters in a

scene transmit identical or highly similar waveforms. Below we simulate an example in which nine

emitters in a target scene, located at the same points as those in the previous case, emit identical

chirps. Since the waveforms are identical and are transmitted simultaneously we expect that the

correlation between the signals arriving from different emitters should approximate a worst case

scenario providing insight into the limitations of our methods. For this example these chirps have

center frequency fc = 30MHz and bandwidth bw = 20MHz.

The resulting data sets, assuming the signals are separable and not separable respectively, are

shown in Figures 6.3a and 6.3b. Once again we see that the cross terms have a significant presence

in the dataset when we correlate the signal data without separating contributions from separate

emitters.
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(a) Assuming separability (b) Cross correlating without separation

Figure 6.3: The total data set for each case

Unlike in the previous example however, the backprojection images which result from the use

of the two data sets are significantly different. In Figure 6.4a the emitters are clearly distinguish-

able and no phantoms or excessive artifacts are present. In Figure 6.4b however, several artifacts

and phantom emitters are present in the reconstructed scene and these phantoms appear to be on

par with the strength of the true emitters in the scene. Furthermore some of the true emitters

appear slightly more blurred more than in Figure 6.4a, and in the locations where emitters over-

lap phantoms, the emitter strengths are incorrectly increased with respect to the strength of the

reconstruction of the emitters along the top and bottom of the scene.

(a) Assuming separability (b) Cross correlating without separation

Figure 6.4: The backprojected image of the target scene
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We conclude that when a scene contains several identical emitters the current method performs

poorly in localizing each one without producing additional phantom localizations. We are thus

motivated to build a rigorous foundation for the analysis of these cross terms. We are interested

in what can be shown regarding where and when they will appear in the image. We will also be

interested in any method which can be shown to minimize their strength. This begins by examining

what can be said regarding how the cross terms in the data are projected into the image space.

6.3 The Two Emitter Case
We begin with the simplest case in which cross term effects can cause phantoms to appear in

the image, that is, the two emitter case. For the general case of two point-like emitters located at

e1, e2 in the scene transmitting arbitrary waveforms our data model takes the form

d(s, t) = dD(s, t) + dC(s, t) (6.24)

=

∫
e−2πif(t−r(s,y,y)/c0)A(s,y,y)

2∑
n=1

|Pn(f)|2δ(y − en)dydf

+

∫
e−2πif(t−r(s,y,y′)/c0)A(s,y,y′)

2∑
n=1

∑
m6=n

P̄n(f)Pm(f)δ(y′ − em)δ(y − en)dydy′df.

(6.25)

So the cross term data contribution takes the form

dC(s, t) =

∫
e−2πif(t−r(s,y,y′)/c0)A(s,y,y′)

×
(
P̄1(f)P2(f)δ(y′ − e1)δ(y − e2) + P̄2(f)P1(f)δ(y′ − e2)δ(y − e1)

)
dydy′df.

(6.26)

Our two primary concerns with regards to the creation of phantoms in the SASL image will be:

their location and their strength relative to that of the emitters. We first consider the phantom

location.

If we consider each term in dC(s, t) individually we note that integration in the first term

produces the phase expression
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φe1e2 = −2πif

(
t− |γ2(s)− e2|

c0

+
|γ1(s)− e1|

c0

)
. (6.27)

If we compare this to the phase in the term from dE(s, t) which is due to the emitter at e2 we have

instead

φe2 = −2πif

(
t− |γ2(s)− e2|

c0

+
|γ1(s)− e2|

c0

)
. (6.28)

The data term due to e2 can thus be thought of as the line integral of the source power spectrum

|P2(f)|2 over the hyperbola of TDOA defined by the emitter location e2 with foci γ1(s), γ2(s).

This leads to an interpretation of the data term due to the cross correlation of the signals from e1

and e2 as the line integral of the product P̄2(f)P1(f) over some hyperbola defined by the location

of the two emitters and two receivers for that particular slow time look.

We thus expect that when the backprojection is performed, the data due to the e2 term will then

be projected onto the hyperbola described by φe2 . As previously discussed, all such hyperbolas

interfere constructively in the location of the emitter leading to a synthetic aperture image of the

target emitter. We further expect that the cross term data will be projected onto this other hyperbola

φe1,e2 , along which no emitter is present, which will lead to the creation of a phantom in the final

image if the projections of several slow time looks overlap along these cross term hyperbolas and

the magnitude of the cross terms being projected is high compared to the true emitter terms.

Thus, taking our image coordinate to be z, we expect the phantom backprojection for a single

slow time sample will thus be onto the hyperbola

|γ2(s)− z| − |γ1(s)− z| = |γ2(s)− e2| − |γ1(s)− e1|. (6.29)

6.4 Formation of the Image
We turn now to the derivation and analysis of the back projection operator which shall act

on our data to form the final image. We begin our analysis by forming a filtered backprojection

operator L to create the image I from the collected data d(s, t).
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I(z) = L[d](z) =

∫
ei2π(t−r(s,z,z)/c0)Q(s, f, z)d(s, t)dsdtdf (6.30)

Substituting our expression for d(s, t) into (6.30) we have

I(z) =

∫
ei2π(t−r(s,z,z)/c0)e−2πif ′(t−r(s,y,y′)/c0)Q(s, f, z)A(s,y,y′)J̄(y, f ′)J(y′, f ′)dydy′dfdsdtdf ′.

(6.31)

Here we make an assumption that the product of the source terms may be written as

J̄(y, f ′)J(y′, f ′) = T (y,y′)B(f ′). (6.32)

The justification for this assumption and its effects will be laid out below. For the moment we

consider the function T (y,y′) to be the source density function we wish to reconstruct for our

image. We will reconsider this choice in 6.6.2. However, we first demonstrate that the backprojec-

tion operator can be put into a pseudodifferential operator form, and thus benefit from the results

of microlocal analysis when considering the source to be the cross term contaminated product

J̄(y, f ′)J(y′, f ′).

Carrying out the integration in t we have

I(z) =

∫
ei2π(f ′r(s,y,y′)−fr(s,z,z))/c0Q(s, f, z)A(s,y,y′)T (y,y′)B(f ′)δ(f − f ′)dydy′dfdf ′ds

(6.33)

=

∫
e
i2π f

c0
(r(s,y,y′)−r(s,z,z))

Q(s, f, z)A(s,y,y′)T (y,y′)B(f)dydy′dfds. (6.34)

The kernel of this operator is then

K(y,y′, z) =

∫
e
i2π f

c0
(r(s,y,y′)−r(s,z,z))

Q(s, f, z)A(s,y,y′)B(f)dfds. (6.35)
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As in the previous case, we would like to choose the filterQ so thatK is as close to a delta function

as possible. That is, we hope to find a choice of Q so that K ≈
∫
ei2π(x−z)·ξdξ at least around those

points which contribute most to the image I(z).

6.5 Forming an FIO Model of the Data via Change of Variables
We first must tackle the problem that the phase of K is a function of more than 3 variables.

In this section we will consider a change of variables into an elliptic coordinate system by noting

that |γ1(s) − y| − |γ2(s) − y′| defines a family of hyperbolas in the plane. That is, for each fixed

γ1(s), γ2(s),y the variable y′ defines a unique hyperbola.

By performing this change of variables we will be able to demonstrate that the collected data

can be put into the form of a Fourier Integral Operator (FIO) which will make the data amenable

to micro local analysis. It is hoped that this form of the data will provide useful insights into the

behavior of cross term effects. However, we will see that, due to the presence of the Jacobian

which arises from the change of variables, the imaging operator is largely intractable under this

change of variables.

However, this will be to our benefit as we only desire to reconstruct the emitter locations

correctly in the image and are not interested in an operator which focuses the effects of the cross

terms. In section 6.7 we shall return to the data model and demonstrate that this same analysis can

be performed without the following change of variables if we consider only the diagonal terms as

desirable data and form a backprojection operator without considering it’s effect on the cross term

contributions.

In chapter 7 we will then examine how the cross terms are backprojected into the image using

this ‘diagonal terms only’ model to formulate the imaging operator. It is hoped that in the course

of future work greater insight into the cross term effects can be gained by connecting the insights

from the change of variables model to the more useful and mathematically tractable diagonal terms

only filter which is derived in section 6.7 and used throughout the rest of this document.
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To this end we begin our analysis of the data by performing the change of variables (y,y′)→

(u,v) defined by

|γ2(s)− y| − |γ1(s)− y′| = |γ2(s)− u| − |γ1(s)− u| (6.36)

|γ2(s)− y|+ |γ1(s)− y′| = |γ2(s)− v|+ |γ1(s)− v|. (6.37)

Credit for the idea to use this change of variables to examine the FIO form of the operator goes to

Dr. James Given of NRL [39].

The PSF can then be written as

K(u,v, z) =

∫
e
i2π f

c0
(|γ2(s)−u|−|γ1(s)−u|−|γ2(s)−z|+|γ1(s)−z|)

×Q(s, f, z)A(s,u,v)B(f)J [(y,y′)→ (u,v)]dfds

(6.38)

=

∫
e
i2π f

c0
(r(s,u,u)−r(s,z,z))

Q(s, f, z)A(s,u,v)B(f)J [(y,y′)→ (u,v)]dfds. (6.39)

Where J [(y,y′ → (u,v)] is the Jacobian due to the change of variables. We can then seek the

critical points of K, that is, those points which most contribute to the value of the integral, by

performing a Stationary Phase analysis. We introduce the large parameter β by writing f = βf̃ so

that

K(u,v, z) =

∫
ei2πβf̃(r(s,u,u)−r(s,z,z))/c0Q(s, f, z)A(s,u,v)B(f)J [(y,y′)→ (u,v)]dfds

(6.40)

is a rapidly oscillating integral.

The largest contribution to K then comes from the critical points at which the phase is station-

ary. These are the points satisfying

d

df
φ(s, f) =

2π

c0

[r(s,u,u)− r(s, z, z)] = 0 (6.41)

d

ds
φ(s, f) =

2πf

c0

[h(s,u,u)− h(s, z, z)] = 0 (6.42)
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where

h(s,u,u) =
γ1(s)− u

|γ1(s)− u|
· γ̇1(s)− γ2(s)− u

|γ2(s)− u|
· γ̇2(s). (6.43)

The condition in equation (6.41) amounts to a statement that the points u and z must lie on the

same TDOA curve. This is easily shown by conversion to an elliptic coordinate system. Taking

the receiver locations γ1(s), γ2(s) as our foci we define the change of coordinates

u1 = a cosh(µu)cos(νu) = aσuτu (6.44)

u2 = a sinh(µu)sin(νu) = a
√

(σ2
u − 1)(1− τ 2

u) (6.45)

with z→ (σz, τz) defined analogously. Then

r(s,u,u) = r(s, z, z) =⇒ 2aτu = 2aτz (6.46)

where the curves of constant τ form hyperbolas in the plane. [40]

Thus, the TDOA at the platform locations γ1(s), γ2(s) must be the same for u as for z for each

critical point.

The condition

h(s,u,u) = h(s, z, z) (6.47)

can be rewritten as

R̂1(u) · v1 − R̂2(u) · v2 = R̂1(z) · v1 − R̂2(z) · v2 (6.48)

where R̂ is the unit vector from the receiving platform to the target point and v is the platform

velocity. Note that we have used v as a spatial variable and vi as a velocity. The subscript will

thus denote the velocity and no subscript will denote the spatial variable. The two instances are not

used together in our equations, so there should be no chance for confusion as to which is meant.
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Here R̂ · vi is the down range component of the velocity for for the ith platform which gives

rise to a Doppler shift in the transmitted signal. Thus the condition in equation (6.42) amounts to a

statement that the difference in the Doppler shifts at each platform from u and z must be the same.

That is, (6.42) is a condition on the Frequency Difference of Arrival or FDOA.

While the isodoppler curves for an arbitrary flight path can be quite complicated the situation

is considerably more straightforward for the case in which one receiver is stationary. If we take

γ1(s) ≡ (u1, u2) constant then the condition simplifies to

R̂2(u) · v2 = R̂2(z) · v2. (6.49)

Therefore the critical points must lie on the curves defined by

R̂2(u) · v2 = c (6.50)

for c is some constant.

We assume for the present that the only critical point is then u = z. We then desire that in the

neighborhood of u = z the PSF behaves like
∫
ei2π(u−z)·ξ. We thus perform the Stolt change of

variables seen previously by writing

f(r(s,u,u)− r(s, z, z)) = (u− z) · Ξ(u, z, s, f) (6.51)

where

Ξ(u, z, s, f) =

∫
∇r(s, z + µ(u− z))dµ (6.52)

and defining

(f, s) −→ ξ =
f

c0

Ξ(u, z, s, f). (6.53)

Our Point Spread Function is then
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K(u,v, z) =

∫
ei2π(u−z)·ξQ(ξ(s), ξ(f), z)A(ξ(s),u,v)B(ξ(f))J [(y,y′)→ (u,v)]η−1dξ

(6.54)

where

η−1 =

∣∣∣∣∂(f, s)

∂ξ

∣∣∣∣ (6.55)

is the reciprocal of the Belkin determinant as seen previously.

The imaging operator is then approximately

I(z) ≈
∫
ei2π(u−z)·ξQ(ξ(s), ξ(f), z)A(ξ(s),u,v)

×B(ξ(f))J [(y,y′)→ (u,v)]η−1V (u,v)dξdudv.

(6.56)

As before we shall base our choice of the filter Q off of this estimate of the image I .

6.6 Determination of the Filter
As previously stated, we desire to have the PSF approximate a delta function near the critical

points so that the singularities in the image are reconstructed as sharply as possible. To this end we

desire to chose Q so that the factors in the PSF multiple to equal 1. That is, we desire to choose Q

so that it is nearly the reciprocal of the other factors in the PSF.

However, the simple choice of

Q(ξ(s), ξ(f), z) =
1

A(ξ(s),u,v)B(ξ(f))J [(y,y′)→ (u,v)]η−1
(6.57)

has three problems.

First, the function A is a function of the scene variables u,v while the filter Q is a function of

the image point z. The second is that there are regions where the function A is zero. These include

any regions outside of the observed scene. Finally, the function B(f) is not known to the operator

forming the filter.
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We first consider the problem of the unknown function B(f). While B(f) is not known, the

frequency content of the signals which it represents can be estimated from the collected data.

Recall that we have assumed a data model in which

J̄(y, f)J(y′, f) = T (y,y′)B(f). (6.58)

However, using the antenna model of the source function we have

J̄(y, f)J(y′, f) =
N∑
n=1

n∑
m=1

P̄n(f)Pm(f)δ(y − yn)δ(y′ − ym). (6.59)

So we expect the function B(f) in our model to behave like

B(f) ≈
N∑
n=1

M∑
m=1

P̄n(f)Pm(f). (6.60)

We cannot know the sum in equation (6.60) since the signal waveforms are unknown and beyond

our control. However, we can gain an insight into this problem by examining what can be deter-

mined regarding B(f) in the single emitter case.

6.6.1 Estimating emitter power spectral density

If only one emitter, located at y0, is present in the scene transmitting the waveform P (f) then

the cross correlated data takes the form

d(s, t) =

∫
e−2πif(t−r(s,y,y′)/c0)A(s,y,y′)|P (f)|2δ(y − y0)δ(y′ − y0)dydy′df (6.61)

=

∫
e−2πif(t−r(s,y,y)/c0)A(s,y,y)B(f)T (y)dydf. (6.62)

The signal recorded at one receiver is given by

s1(s, t) =

∫
e−i2πf(t−|γ1(s)−y|/c0)P (f)δ(y − y0)

4π|γ1(s)− y|
dydf. (6.63)
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We may then take the autocorrelation of this signal. Denoting the autocorrelation by A we have

A(s, t) = s1(s, t) ? s1(s, t) =

∫
ei2πf(τ−|γ1(s)−y|/c0)e−i2πf

′(t+τ−|γ1(s)−y|/c0)

× P̄ (f)δ(y − y0)

4π|γ1(s)− y|
P (f)δ(y′ − y0)

4π|γ1(s)− y′|
dy′dydfdf ′dτ

(6.64)

=

∫
ei2πf(−|γ1(s)−y|/c0)e−i2πf(t−|γ1(s)−y|/c0) |P (f)|2δ(y − y0)

(4π|γ1(s)− y|)2
dydf (6.65)

=

∫
e−i2πft

B(f)

(4π|γ1(s)− y0|)2
df = F−1

{
B(f)

(4π|γ1(s)− y0|)2

}
. (6.66)

Thus,

F {A(s, t)} =
B(f)

(4π|γ1(s)− y0|)2
. (6.67)

Note that we have carried out the integrations of the two delta functions, which are over differ-

ent variables y and y′. Since the variables of integration are different in each delta function the

difficulties involved with the theoretical question of the mathematical meaning of a squared delta

function never arises.

We see that in the single emitter case, B(f) can be extracted from the signal data by Fourier

transforming the autocorrelation function. The factor (4π|γ1(s)−y0|)2 is constant for a single slow

time look and can be treated as a simple scale factor which is absorbed into the data. Additionally,

in the case that the first receiver is stationary, γ1(s) = constant, the scale factor is constant over all

slow time looks.

We generalize the results obtained above for the case of several emitters in the scene. Autocor-

relation of the signal recorded at one receiver produces

A(s, t) =

∫
e−i2πft

(
N∑
n=1

|Pn(f)|2δ(y − yn)

(4π|γ1(s)− y|)2

+
N∑
n=1

∑
m6=n

P̄n(f)Pm(f)δ(y − yn)δ(y′ − ym)

(4π)2|γ1(s)− y||γ2(s)− y′|

)
dydy′df

(6.68)

= F−1

{
N∑
n=1

|Pn(f)|2

(4π|γ1(s)− yn|)2
+

N∑
n=1

∑
m 6=n

P̄n(f)Pm(f)

(4π)2|γ1(s)− yn||γ2(s)− ym|

}
. (6.69)
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Thus, setting B̃(f) = F {A(s, t)} provides a scaled estimate of the spectral content of the signal

which can be used to unambiguously define a filter Q to be applied in the imaging operator. While

B̃(f) provides less information for us to construct the filter than does the perfect matched filter

employed in traditional SAR we must be satisfied with something less than a perfect estimate of

the spectral content since we assume that the emitted waveforms are unknown and inseparable in

our recorded data.

We turn now to the second problem with the chosen filter, that the filter is a function of the

image variable z while the geometric spreading factors in A are a function of the scene variables.

Recall that the geometric spreading factors take the form

A(s,y,y′) =
1

(4π)2|γ1(s)− y||γ2(s)− y′|
. (6.70)

Furthermore, we have said that the bulk of the image integral comes from those points satisfy-

ing u = z. Where u is defined by |γ2(s) − y| − |γ1(s) − y′| = |γ2(s) − u| − |γ1(s) − u|. Thus

the critical points satisfy |γ2(s)− y| − |γ1(s)− y′| = |γ2(s)− z| − |γ1(s)− z|. We have already

seen in equation (6.20) that those terms which account for true emitter locations, and thus are most

desirable to reconstruct correctly, satisfy y = y′. We thus evaluate the geometric spreading terms

for y = y′ = z so that we calculate A(s, z, z) for the purposes of determining Q.

Finally, we account for any regions in which the function A is zero by application of a smooth

cutoff function χ(s, f, z) which is equal to one over the data collection manifold and zero outside

it. Our filter then takes the form

Q(s, f, z) =
χ(s, f, z)η

A(s, z, z)B̃(f)J [(y,y′)→ (u,v)]
(6.71)

The imaging operator then takes the form

I(z) =

∫
e−i2πr(s,z,z)/c0

χ(s, f, z)η

A(s, z, z)B̃(f)J [(y,y′)→ (u,v)]
D(s, f)dsdf. (6.72)
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So that we have shown that the backprojection operator can be put into a pseudodifferential form

to act on the entire data set D(s, f) with the filter Q chosen as above.

However, this filter was chosen under the assumption that we desire to reconstruct the function

T (y,y′) as accurately as possible. We examine the effect of this through a microlocal analysis of

the imaging operators effects on the diagonal and cross terms in the data.

6.6.2 Microlocal Analysis of the Data Terms

We have shown that the imaging operator K can be written in the form of a pseudodifferential

operator, abbreviated ΨDO. Pseudodifferential operators have what is known as the pseudolocal

property. If K is a ψDO then WF(Ku) ⊆ WF(u), where WF (·) denotes the wave front set.

Thus singularities are reconstructed in their correct locations provided that they were visible to the

receivers during the data collect. [?, 2]

We have seen that the operator K can be written as

K(z,u,v) =

∫
ei2π(u−z)·ξAdξ (6.73)

where A contains the filter and other amplitude factors which do not influence the location of

the backprojection. Thus we can consider K ∝
∫
ei2π(u−z)·ξdξ sufficient for this portion of our

analysis.

When K operates on a diagonal term we have that T (u,v) = T (u,u), so that T does not

depend on v, and u = y so that the image of the diagonal term, Id(z), is

Id(z) ∝
∫
ei2π(u−z)·ξT (u,v)dξduv (6.74)

=

∫
ei2π(y−z)·ξT (y,y)dξdy = T (z, z). (6.75)

Thus, diagonal terms are acted on so that contributions to the data which come from true emitters

in the scene are backprojected in the image to reconstruct the emitters in the correct location.
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However, when the operator K acts on cross terms the result is different. If we form an image

from the first term in the cross term data dC(s, t) derived above we have

Ic(z) ∝
∫
ei2π(u−z)·ξT (u,v)dξ =

∫
T (z,v)dv. (6.76)

Thus, the contribution to the image from a cross term is not proportional to the value of the source

density function at the corresponding point in the scene, but rather is proportional to the integral

of T over the variable v for that image point.

This is not a difficulty, indeed this is actually to our benefit. Although the cross correlated data

contains both diagonal and cross terms the cross terms merely clutter the image with undesirable

phantoms. Our true desire is not to reconstruct the function T (y,y′) containing both real and

phantom emitter contributions as accurately as possible, but rather to form an image of the function

V (y) containing only the diagonal terms which arise from actual emitter locations. That is, we

would like to image the function

V (y) =
N∑
n=1

|Pn(f)|2δ(y − en) (6.77)

from the data which gives us T (y,y′). Since V is merely the diagonal terms of T the two functions

are related by T (y,y′) = V (y) + cross terms.

6.7 The Diagonal Terms Filter
We can thus return to our previous work demonstrating that the data can be written as d(s, t) =

dD(s, t)+dC(s, t) to formulate a filter which is best suited to the imaging of the diagonal terms. We

do this by taking dD(s, t) to be the data we desire to collect and treat the cross term data dC(s, t)

as a nonrandom noise-like term that produces undesirable corruptions in the image, rather than as

a portion of a source function to be reconstructed. We write
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I(z) =

∫
ei2π(t−r(s,z))Q(s, f, z) [dD(s, t) + dC(s, t)] dsdt (6.78)

=

∫
ei2π(t−r(s,z))Q(s, f, z)dD(s, t)dsdt+

∫
ei2π(t−r(s,z))Q(s, f, z)dC(s, t)dsdt. (6.79)

Then, under the previous assumptions we have

I(z) =

∫
K(y, z)V (y)dy +

∫
K(y, z)[cross terms]dy (6.80)

where

K(y, z) =

∫
e
i2π f

c0
(r(s,y)−r(s,z))

Q(s, f, z)A(s,y)B(f)dfds. (6.81)

As before we seek to define Q so that K is as close as possible to a delta function so that we

may reconstruct V (y) as accurately as possible. Taking y in place of u in our previous stationary

phase argument we find that our critical points must satisfy

r(s,y) = r(s, z) (6.82)

R̂1(y) · v1 − R̂2(y) · v2 = R̂1(z) · v1 − R̂2(z) · v2. (6.83)

These curves can be quite complicated for an arbitrary flight path. For the case γ1(s) = x0, for

some constant x0, these critical points then lie at the intersection of the hyperbolas defined by

r(s,y) = r(s, z) and the curves R̂2(y) · v2 = R̂2(z) · v2, where R̂2(y) is the unit vector in the

direction of y from the platform whose flightpath is γ2(s).

For example, in the flight path which we have been simulating the moving receiver travels

along the x-axis so that the y components of both the position vector γ2(s) and v2 are zero. With

γ1(s) held constant as well the FDOA condition reduces to

(γ2x(s)− yx)v2x

|γ2(s)− y|
=

(γ2x(s)− zx)v2x

|γ2(s)− z|
. (6.84)

94



Here γ2x(s) is the x component of the flight path and yx is the x component of the two di-

mensional scene variable y. Under these conditions the TDOA and FDOA are far simpler. We

plot two examples of these curves for a receive position corresponding to γ2(s) = (7.5, 0) and

γ2(s) = (17, 0) in Figure 6.5.

(a) The TDOA and FDOA curves for γ2(s) = (7.5, 0) (b) The TDOA and FDOA curves for γ2(s) = (17, 0)

Figure 6.5: The TDOA Curves (Red) and FDOA Curves (Blue) for two different points along the flight path
of the moving receiver. The circles denote receiver positions.

From Figure 6.5 it is clear that the only point of intersection of the two sets of curves which

lies in our target scene is the point y = z. Although the TDOA and FDOA curves can be far more

difficult to plot for a complex flight path we assume for the present that this critical point condition

will hold for more complicated sets of curves as well.

As before, we desire that K behave like a delta function near these critical points. To this end

we apply the Stolt change of variables previously discussed. Doing so puts K into the form of a

ΨDO, provided that A satisfies the symbol estimate. Taking η to be the Beylkin determinant we

have

K(y, z) =

∫
ei2π(y−z)·ξQ(s, f, z)A(s,y)B(f)η−1dξ. (6.85)

We then choose Q to be the reciprocal of all of the non-phase factors in the integrand so that their

product will be approximately equal to unity in those regions near a critical point. As before, to

accomplish this we evaluate A at the point y = z and we make the substitution B(f) ≈ B̃(f)
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where B̃ is the measured power spectrum of the recorded signals. Our filter is then

Q(s, f, z) =
χ(s, f, z)η

A(s, z)B̃(f)
(6.86)

where χ is smooth cut off function preventing division by zero.

Applying this filter to our imaging operator produces

I(z) =

∫
ei2π(t−r(s,z)) χ(s, f, z)η

A(s, z)B̃(f)
D(s, f)ds df (6.87)

In section 6.6.2 we discovered that the filter we had derived resulted in the imaging operator

acting on the data to reconstruct the source function with the correct intensity in those regions

where an emitter was located. We can apply the same analysis to this version of the imaging

operator.

Using the same method as we did in section 6.6.2 we have

Id(z) ∝
∫
ei2π(y−z)·ξV (y)dξdy = V (z) (6.88)

Thus, K acts on DD(s, t) to reconstruct the diagonal terms of the data in their correct location

and orientation, just as we intended that it should. The analysis of how K acts to backproject the

cross terms is, as was alluded to by our results in section 6.6.2, more complicated. It is this subject

which we will take up in the next chapter.
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Chapter 7

THE EFFECT OF CROSS TERMS IN THE DATA

7.1 Locating the Cross Term Phantoms
Now that we have an expression for the imaging operator to be applied to the data we can

return to the question of when and where cross term phantoms appear in the final image. We

saw in section 6.6 that the bulk of their contribution to the image occurs at the points z satisfying

|γ2(s)− y| − |γ1(s)− y′| = |γ2(s)− z| − |γ1(s)− z|.

This is consistent with our earlier observation that the cross terms in the data model have the

same form as the diagonal emitter terms but with the data collection appearing to take place along

hyperbolas defined by |γ2(s) − y| − |γ1(s) − y′| = constant. Since every cross term is the result

of exactly two emitters in the scene, we can restrict our analysis to the two emitter case. The

multi-emitter case then follows easily as the sum over the cross term effects of all pairs of emitters

present.

As seen in section 6.3 the cross terms in the data model for a scene containing two emitters are

given by

dC(s, t) =

∫
e−2πif(t−r(s,y,y′)/c0)A(s,y)P̄1(f)P2(f)δ(y′ − e1)δ(y − e2)dydy′df

+

∫
e−2πif(t−r(s,y,y′)/c0)A(s,y)P̄2(f)P1(f)δ(y′ − e2)δ(y − e1)dydy′df.

(7.1)

For simplicity we consider just the first term, the analysis of the second term is identical.

Additionally, the amplitude terms A and Q do not alter the location of the backprojection and so

we neglect them in this analysis. The backprojection operator acts on the first term of dC(s, t) to

yield
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I(z) =

∫
e
i2π f

c0
(r(s,y,y′)−r(s,z,z))

P̄1(f)P2(f)δ(y′ − e1)δ(y − e2)dydy′dfds. (7.2)

=

∫
e
i2π f

c0
(r(s,e2,e1)−r(s,z,z))

P̄1(f)P2(f)dfds. (7.3)

Thus, the cross term phantom results in a backprojected return along the hyperbola

|γ2(s)− z| − |γ1(s)− z| = |γ2(s)− e2| − |γ1(s)− e1| (7.4)

for each slow time step s. This backprojection will have amplitude Ae1e2(s) given by

Ae1e2(s) = Q(s, f, z)A(s, e2, e1)P̄1(f)P2(f). (7.5)

We note here that the location of the cross term backprojection for a given slow time step is

a function of the location of both emitters and both receivers. We have seen in the previous data

model that the backprojections interfere constructively in regions in which an emitter is located

and destructively elsewhere. We can ask whether a similar process occurs when cross terms are

present in the data.

Our analysis of the backprojections of the diagonal and cross terms so far has indicated that,

while the diagonal terms will be focused up in the final image regardless of the receiver flightpath,

the location of the cross term phantoms depends on receiver trajectory. Thus, over a long flight

path, the cross term phantoms should blur out across the image while the diagonal terms will

focus up ever more sharply. Thus, over a sufficiently long aperture, the phantom contribution to

the image should be reduced well below the level of the diagonal terms using the backprojection

scheme devised above.

We first illustrate this phenomenon with a numerical example and then present a proof that the

cross term hyperbolas will not result in a focused phantom point while the diagonal terms will

focus at the location of the emitter.
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In Figure 7.1 we show the hyperbolas for a the flight path we have previously been simulating.

That is for γ2(s) beginning at (0, 0) and traveling to (20, 0) while γ1(s) remains stationary at

(10, 20). The hyperbolas shown are the backprojection curves from 1.5km intervals along this

path for the case of the diagonal data term for a single emitter in Figure 7.1a and for a cross term

in Figure 7.11b. In both figures the circles indicate the emitter positions.

(a) The diagonal backprojections (b) The cross-term backprojections

Figure 7.1: Backprojection hyperbolas for a diagonal and cross term case

In this example it is clear that, while every diagonal term backprojection intersects at the loca-

tion of the emitter, none of the cross term backprojections shown cross the location of either of the

emitters which produced the cross term in the data. Furthermore, the cross term hyperbolas do not

intersect each other at a unique point. Rather their intersections are blurred out over a curve in the

image. This would lead to progressively weaker phantom appearance in the image as compared to

the emitter image over time.

This leads us to ask whether it can be shown that this behavior occurs in general for all emitter

locations and receiver trajectories. To this end we consider the envelope of the family of backpro-

jection hyperbolas for each data term.
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7.1.1 The Backprojection Envelope

Mathematically the envelope of a family of curves is defined as: A curve which touches all of

the curves of a family and which is touched at every point by a curve of the family. In simpler

terms, the envelope of a family of curves is the limit of the set of all points at which “infinitely

close" members of the family intersect each other. For a single parameter family, this means two

curves whose single parameter differ only by an infinitesimal ε. [41, 42]

Thus, the envelope is not the set of all points at which two members of a family intersect one

another. Rather it is the limiting set of the intersection of nearby curves of a family. It is elsewhere

defined as the curve which touches all members of a family of one parameter curves tangentially

and is touched tangentially at every point by a member of the family. We may also extend this

interpretation to the degenerate case in which the ‘curve’ is a single point through which every

member of the family passes. [41–43]

If, for some data term, we can demonstrate that the envelope of the family of backprojection

curves is a single point, that is, that all such curves overlap at a single location, then those backpro-

jections will constructively interfere in the image producing a strong peak. If, on the other hand,

the backprojection curves of another term do not intersect at a single point we will have shown

that any phantoms due to the backprojection imaging process from that term will gradually blur

out along some curve in the image as the receiver moves along its flight path.

First we note the following theorem: If the curves of the family f(x, y, C) = 0 have no singular

points, the curve defined by the system of equations f(x, y, C) = 0, f ′C(x, y, C) = 0 is the

envelope of the family provided it also has no singular points. [41–43]

The backprojection hyperbolas for a term in the data collection are the family of curves

f(z, s, ei, ej) = |γ2(s)− z| − |γ1(s)− z| − |γ2(s)− ei|+ |γ1(s)− ej| (7.6)

Differentiating with respect to the parameter s we have
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f ′(z, s, ei, ej) =
(γ2(s)− z) · γ̇2(s)

|γ2(s)− z|
− (γ1(s)− z) · γ̇1(s)

|γ1(s)− z|

− (γ2(s)− ei) · γ̇2(s)

|γ2(s)− ei|
+

(γ1(s)− ej) · γ̇1(s)

|γ1(s)− ej|
.

(7.7)

Since the first receiver is stationary, γ1(s) is constant and thus γ̇1(s) = 0 so that

f ′(z, s, ei, ej) =
(γ2(s)− z) · γ̇2(s)

|γ2(s)− z|
− (γ2(s)− ei) · γ̇2(s)

|γ2(s)− ei|
. (7.8)

Thus the envelope is the curve satisfying the system of equations given by

|γ2(s)− z| − |γ1(s)− z| − |γ2(s)− ei|+ |γ1(s)− ej| = 0 (7.9)

(γ2(s)− z) · γ̇2(s)

|γ2(s)− z|
− (γ2(s)− ei) · γ̇2(s)

|γ2(s)− ei|
= 0. (7.10)

Note that neither equation has any singular points since we assume that the platform is separated

some distance from the scene. Thus γ2(s) 6= z and γ2(s) 6= ei. This is required on physical

grounds already and not a limitation to the theory.

We define a focused point of a family of curves as: a point through which every member of

the family passes. We shall first prove that if such a point exists for the family of backprojection

hyperbolas in our model then it is unique. Thus, if all the backprojections for a data term construc-

tively interfere at a point they do not constructively interfere at any other point in the scene. Once

uniqueness is demonstrated we will examine existence.

For simplicity of notation we shall allow ei to refer both to the location of the ith emitter in the

scene as well as shorthand to reference the emitter itself and do the same with the receiver located

at γi(s) at slow time step s.

Theorem 1: Let two receivers observe a scene with one in motion and the other stationary. If

the receiver in motion flies any flightpath through or around the target scene for which its velocity

vector is not aimed directly at the the stationary receiver then: If the family of hyperbolas, over
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which a data term is backprojected according to the imaging operator defined in equation (6.87),

has a focused point, that focused point is unique.

Proof: Let the signals produced by two emitters e1 and e2 give rise to a term in the cross

correlated data as previously discussed. Let z0 be a focused point of the family of backprojection

hyperbolas formed when this term is filtered and backprojected to form the image as described by

equation (6.87). Then, as previously shown, these hyperbolas are described by the one parameter

family of equations given by

|γ2(s)− z| − |γ1(s)− z| = |γ2(s)− e2| − |γ1(s)− e1|. (7.11)

Note here that the argument for the symmetrical case for the cross term in which e1 and e2

are interchanged is identical and that the diagonal case e1 = e2 is merely a degenerate version of

the cross term case. Thus we need only examine this form of the family of hyperbolas in order to

exhaust the analysis of the backprojection families for all data terms.

Then,

|γ2(s)− z0| − |γ1(s)− z0| = |γ2(s)− e2| − |γ1(s)− e1|. (7.12)

for all values s by definition of a focused point.

So, z0 is intersected by every member of the family of curves trivially and so by definition, a

member of the envelope of the family.

Since z0 is an envelope point for every curve in the family and γ̇1(s) = 0, z0 also satisfies,

(γ2(s)− z0) · γ̇2(s)

|γ2(s)− z0|
− (γ2(s)− ei) · γ̇2(s)

|γ2(s)− ei|
= 0 (7.13)

for all s, due to the envelope theorem given above.

Now, assume there exists another point in the image z1 6= z0, which is is also focused point for

the envelope of the family. Then

|γ2(s1)− z1| − |γ1(s1)− z1| = |γ2(s1)− e2| − |γ1(s1)− e1| (7.14)
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and

|γ2(s2)− z1| − |γ1(s2)− z1| = |γ2(s2)− e2| − |γ1(s2)− e1| (7.15)

for some value of s1 which is a particular realization of s, and s2, the slow time data collection

point succeeding s1. This must be true since, by definition of the focused point, z1 must lie on all

hyperbolas in the family. Furthermore,

(γ2(s1)− z1) · γ̇2(s1)

|γ2(s1)− z1|
− (γ2(s1)− e2) · γ̇2(s1)

|γ2(s1)− e2|
= 0 (7.16)

for some value of s1.

Since z0 is a focused point, it also satisfies

|γ2(s1)− z0| − |γ1(s1)− z0| = |γ2(s1)− e2| − |γ1(s1)− e1| (7.17)

|γ2(s2)− z0| − |γ1(s2)− z0| = |γ2(s2)− e2| − |γ1(s2)− e1| (7.18)

Therefore,

|γ2(s1)− z0| − |γ1(s1)− z0| = |γ2(s1)− z1| − |γ1(s1)− z1| (7.19)

|γ2(s2)− z0| − |γ1(s2)− z0| = |γ2(s2)− z1| − |γ1(s2)− z1| (7.20)

Since γ1(s1) = γ1(s2) because γ1(s) is constant, it is clear that |γ1(s1) − z0| = |γ1(s2) − z0|

and |γ1(s1)− z1| = |γ1(s2)− z1|. So that, by subtraction of (7.20) from (7.19) we have

|γ2(s1)− z0| − |γ2(s2)− z0| = |γ2(s1)− z1| − |γ2(s2)− z1| (7.21)

which may be rewritten as

|γ2(s1)− z0| − |γ2(s1)− z1| = |γ2(s2)− z0| − |γ2(s2)− z1|. (7.22)
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Thus, the difference in the distance from the second receiving platform to each of the points

must be equal as the platform moves from γ2(s1) to γ2(s2). Since we have postulated that z0 6= z1

the platform must move along some hyperbola with the two focused points as the foci. This can be

more clearly seen by setting |γ2(s1)− z0| − |γ2(s1)− z1| = C where C is constant.

Essentially, by setting |γ2(s1) − z0| − |γ2(s1) − z1| equal to a constant we are examining a

specific realization of the single point s1 along the flight path of γ2(s). Thus, with a fixed (but

arbitrary) choice for s1 the condition is

|γ2(s)− z0| − |γ2(s)− z1| = C (7.23)

in the region around s2. Recall z0 and z1 are also fixed. Allowing s to vary around s1 it is clear

that this equation traces out a portion of a hyperbola with foci z0 and z1 and containing the point

γ2(s1). Thus, in physical terms, this condition constrains the flight path of the moving receiver to

some hyperbola in the plane in the region around the time step s1.

If we allow the perpendicular bisector of the line segment joining z0 and z1 to form the x-

axis of a new coordinate system and the line between z0 and z1 to form the y-axis, the receiving

platform must follow a flight path like the examples shows in Figure 7.2.

Figure 7.2: The coordinate system defined by the two focused points

It is certainly possible for the moving receiver to fly any other flight path, however, if it does so

then we have reached a contradiction and our conclusion is already proven. Thus we assume that

the receiver is constrained to such a flight path.
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We now take into consideration the effect of the position of the stationary receiver on the

existence of the hypothesized second focused point z1.

In equation (7.19) we demonstrated that a necessary condition for z1 to be in the envelope of

the backprojection family given that z0 is a focused point is that

|γ2(s1)− z0| − |γ1(s1)− z0| = |γ2(s1)− z1| − |γ1(s1)− z1|. (7.24)

However, we have now gone further and shown that, for a second focused point to exist, the flight

path of the moving receiver must be constrained to one of a family of hyperbolas in the plane. That

is, |γ2(s)− z0| − |γ2(s)− z1| = C for some constant C. Therefore equation (7.19) implies

|γ1(s)− z0| − |γ1(s)− z1| = |γ2(s)− z0| − |γ2(s)− z1| = C. (7.25)

Thus, for z1 to be a focused point of the family, the stationary receiver γ1(s) must also lie on the

same hyperbola that constrains the flight path of γ2(s). In practice this should be easily avoided.

However, we can go further and show that of the infinite number of hyperbolas in this family,

only the degenerate case, that is, the the case for which C = 0 and the ‘hyperbola’ is actually

a straight line flight path pointed directly at the stationary receiver, allows for the existence of a

second focused point.

Using the coordinate system set up in figure 7.2, let γ2(s) and γ1(s) be on some hyperbola in

the family for some fixed constant C. The data collection for one point along this path is shown

graphically in figure 7.3. In this figure the black hyperbola is the flight path of the receiver in

motion and the stationary receiver is located at a point on this hyperbola. The location of the

stationary receiver is denoted by the radar dish and the location of the moving receiver by the

clipart airplane.

Recall that, because z0 is a focused point of the family of backprojections and therefore lies on

every hyperbola in the family, the backprojection hyperbola for any location of γ2(s) is defined by
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Figure 7.3: The position requirements for a mirror point to be in the envelope of the backprojection family.

|γ2(s)− z| − |γ1(s)− z| = |γ2(s)− z0| − |γ1(s)− z0|. (7.26)

Since one branch of a hyperbola is a concave curve any line in the plane may intersect it in at

most two points. Specifically to our interest, the y-axis of the coordinate system defined by the

line segments z0z1 can intersect the backprojection hyperbola in at most two points. We know that

one of these points is z0. We have hypothesized that the other point of intersection is the point z1,

for all locations of the receiver γ2(s).

We shall show that, when γ2 and γ1 are on a hyperbola defined by the foci z0 and z1, then a

second hyperbola (the hyperbola of TDOA for the two receivers shown in figure 7.4) containing

z0 cannot contain z1 unless the line γ2γ1 between the two receivers makes a right angle with the y-

axis defined by z0z1. Since the only hyperbola for which this is true at all points is the degenerate

hyperbola which forms the x-axis of the system shown in 7.3 this is the only flight path which can

produce a second focused point in the image.

First, note that for any hyperbola, all of the points of the curve are contained between the

asymptotes. These asymptotes pass through the origin. Thus, when we consider the hyperbola to

which the receivers are confined, the line γ2γ1 between the two receivers must have a slope whose
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Figure 7.4: The hyperbola of TDOA for the receiver positions shown in figure 7.3.

magnitude is less than the magnitude of the slope of the asymptotes and must intersect the y-axis

of the z0z1 coordinate system above the x-axis as shown in 7.3.

We thus denote by I the magnitude of the distance from the origin of the z0z1 coordinate axis

to the point of intersection with the line γ2γ1 and note that I is strictly positive whenever the two

receivers are on a non-degenerate hyperbola as shown in 7.3.

We now define a second coordinate system based upon the location of the two receivers γ2 and

γ1. Here we denote the axes as x̃ and ỹ to prevent confusion with the z0z1 coordinates. Let the x̃-

axis be defined as the line γ2γ1 passing through the receivers and let the ỹ-axis be the perpendicular

bisector of the line segment γ2γ1.

Then, as shown in figure 7.3, the x̃-axis intersects the y-axis at an angle 0 ≤ θ < π
2
. The (x̃, ỹ)

coordinates of z0 and z1 are

z0 =
(
Ix − (z0 − I) cos(θ), (z0 − I) sin(θ)

)
(7.27)

z1 =
(
Ix + (z0 + I) cos(θ), (z0 + I) sin(θ)

)
. (7.28)

Here we have denoted by Ix the distance along the x̃-axis at which the line z0z1 crosses, and in a

slight abuse of notation we have used z0 to denote the the magnitude |z0| = |z1|.
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Now since γ1 and γ2 are equally spaced across the ỹ-axis we can define an elliptical coordinate

system by

x̃ = a cosh(µ) cos(ν) (7.29)

ỹ = a sinh(µ) sin(ν) (7.30)

where a is half the distance between γ1 and γ2. In an elliptical coordinate system such as (7.30)

hyperbolas are given by lines of constant |ν| with the half of the hyperbola above the x̃ axis given

by 0 < ν and the half below the x̃-axis given by −ν < 0 as shown in figure 7.5.

Figure 7.5: The lines of an elliptical coordinate system.

Now, if z0 and z1 lie on the same hyperbola of TDOA we must have

z̃0 = (a cosh(µ0) cos(ν0), a sinh(µ0) sin(ν0)) (7.31)

z̃1 = (a cosh(µ1) cos(−ν0), a sinh(µ1) sin(−ν0)). (7.32)

Combining the representations of the locations of z0 and z1 then, we have
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z̃0x = a cosh(µ0) cos(ν0) = Ix − (z0 − I) cos(θ) (7.33)

z̃0y = a sinh(µ0) sin(ν0))) = (z0 − I) sin(θ) (7.34)

z̃1x = a cosh(µ1) cos(−ν0) = Ix + (z0 + I) cos(θ) (7.35)

z̃1y = a sinh(µ1) sin(−ν0) = (z0 + I) sin(θ). (7.36)

Noting that cos(−x) = cos(x) and sin(−x) = − sin(x) we have

a cosh(µ0) cos(ν0) + z0 cos(θ) = Ix + I cos(θ) (7.37)

a cosh(µ1) cos(ν0)− z0 cos(θ) = Ix + I cos(θ) (7.38)

− a sinh(µ0) sin(ν0) + z0 sin(θ) = I sin(θ) (7.39)

− a sinh(µ1) sin(ν0)− z0 sin(θ) = I sin(θ). (7.40)

Therefore

a cosh(µ0) cos(ν0) + z0 cos(θ) = a cosh(µ1) cos(ν0)− z0 cos(θ) (7.41)

− a sinh(µ0) sin(ν0) + z0 sin(θ) = −a sinh(µ1) sin(ν0)− z0 sin(θ). (7.42)

Rearranging terms produces

2z0 cos(θ) = a cos(ν0)
(

cosh(µ1)− cosh(µ0)
)

(7.43)

2z0 sin(θ) = a sin(ν0)
(

sinh(µ0)− sinh(µ1)
)
. (7.44)

Note that when θ = 0, the receivers γ1 and γ2 are equally spaced across the y-axis and the

hyperbola of TDOA is the straight line forming the y-axis of the z0z1 coordinate axis. At this

point then, the hyperbola of TDOA clearly hits both z1 and z0. This is true for all flight paths

constrained by (7.26). However, since z1 is a focused point only if it is hit by every hyperbola of
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TDOA we can simply note that θ = 0 will satisfy the condition in equation (7.26) and constrain

our analysis to those points for which θ 6= 0.

Since, for the geometry shown in figure 7.3, 0 < θ < π
2

and 0 < ν0 <
π
2

so that 0 < cos(θ)

and 0 < cos(ν0) equation (7.43) implies that we have that cosh(µ1) > cosh(µ0). Since µ is

strictly positive this implies µ1 > µ0. Likewise 0 < sin(θ) and 0 < sin(ν0), thus we must have

0 <
(

sinh(µ0) − sinh(µ1)
)

. However, since sinh(x) is a positive monotonic function in the first

quadrant and µ0 < µ1 this is false!

Note that we have examined the geometry shown in 7.3 in explicit detail. The case in which the

receivers are located on the opposite side of the y-axis is merely a mirror case where θ is measured

from the right instead of the left side. The case in which the two receivers lie below the x-axis

instead of above it is likewise identical. Indeed, since we have arbitrarily determined the positive

direction of the y axis to begin with it is possible to simply define the side of the x-axis on which

the two receivers lie as the positive y direction.

We have therefore reached a contradiction and it cannot be true that z1 is on the same hyperbola

of TDOA as z0 when 0 < θ. Since the only hyperbola for which θ = 0 for all points along the

flightpath is the degenerate case of the x-axis it must be that γ2(s) and γ1(s) are confined to this

straight line. Any other flight path will not produce a second focused point.

Thus, for the case of γ1 stationary we must have z1 and z0 on the same circle centered at γ1(s1)

and the moving receiver flying directly toward or away from the stationary receiver during the

entire data collection. This is illustrated in Figure 7.6.

Figure 7.6: The position requirements for a mirror point to be in the envelope of the backprojection family.
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Thus, the only situation in which z1 is a member of the envelope of the backprojection family

is when the platform in motion flies a data collection which is along the perpendicular bisector

of the line segment joining the two points. Since the point z1 is not specified a priori, we must

rephrase this statement in order to capture its true meaning.

First, define the mirror point of a given focused point for time step s1 as that point which is

the reflection of the focused point across the line in the plane which passes through the moving

receiver’s position along the vector defining the receiver’s velocity. For example, in Figure 7.6, the

point z1 is the mirror point of the focused point z0 for the flight path along the x-axis.

Then, what we have proven is that: if there is a focused point z0 in the SASL image and the

moving receiver flies a straight line flight path aimed directly at (or away from) the stationary

receiver, then there will be a second focused point in the image at the location of the mirror point

of z0. Henceforth we shall assume that our receivers are constrained to avoid flying this one highly

specific flight path.

Thus, whenever a focused point exists in the family of backprojections it is unique regardless of

the data collection flight path unless for the entire data collection the moving receiver flies directly

toward or away from the stationary receiver’s position. �

We can illustrate how the location of the stationary receiver, with respect to the flight path of

the moving receiver, influences the existence of additional points in the envelope of the family of

backprojection curves by examining some numerical examples of the backprojection hyperbolas

for a scene containing a single emitter with various locations for the stationary receiver. These

results are shown in Figure 7.7.

Here, as we have already proven, we see that when the receiver in motion flies a flight path

directly toward or away from the stationary receiver (Figures 7.7f and 7.7b respectively), the back-

projection curves intersect at the mirror point of the emitter in the scene. However, when the same

flight path is flown with the stationary receiver in position 2, 3, or 4, the curves will constructively

interfere only at the location of the emitter.
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(a) Graphic of the flight path and 5 ex-
ample positions for the stationary re-
ceiver.

(b) Position 1 (c) Position 2

(d) Position 3 (e) Position 4 (f) Position 5

Figure 7.7: Examples of the families of backprojection hyperbolas for a single emitter scene with various
hypothesized locations for the stationary emitter.

We note here that the existence or nonexistence of such mirror point artifacts in the image

depends only on the relative locations and flight paths of the two receivers, which are known and

under the control of the data collection designer. Therefore, since the flight paths which give rise to

these extra points in the envelope of the family of backprojection curves are highly restrictive and

should be easily avoided by an operator with very little restriction on the data collection process,

we shall henceforth assume in our examples and discussion that these flight paths are avoided.

Thus, we may assume that if a focused point exists due to a data term, it is unique.

Now that we have a full understanding of the uniqueness of a focused point in the SASL image

we are prepared to prove that the only such points will be the emitter positions.

Theorem 2: If, as described in the data collection model above, one receiver is stationary

and not in a direct line with the moving receiver’s flight path, the only focused points for all back-

projection hyperbolas in the image given by equation (6.87) are the emitter locations regardless of

the flight path of the second receiver.
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We shall prove this theorem by exhausting the possible cases in which the receiver/emitter

geometries can be set up. We first examine the diagonal terms and then move to the cross terms.

Proof: Case 1: The diagonal terms.

The contribution to the image of any diagonal term in the data takes the form

∫
ei2π(t−r(s,z))Q(s, f, z)dD(s, t)dsdt (7.45)

where dD(s, t) is the data term being backprojection onto the image. Thus, a diagonal term projects

the product Q(s, f, z)dD(s, t) onto the image for each set of receiver positions γ1(s), γ2(s). In the

case of a diagonal term, the data from only one emitter is present by definition, let the position of

this emitter be e1. As previously shown these backprojections are over the hyperbolas defined by

|γ2(s)− z| − |γ1(s)− z| = |γ2(s)− e1| − |γ1(s)− e1|. (7.46)

It is clear that, for all times along the flight path, this equation has the trivial solution z = e1. Thus,

all backprojections constructively interfere at the point in the image corresponding to the emitter’s

location and it is a focused point in the resulting image. Since a focused point is unique by the

previous theorem, the only focused points resulting from the diagonal terms are at the locations of

the emitters corresponding to those terms.

Case 2: The cross terms.

It has already been seen that, in the case of a diagonal term, one focused point exists and it

exists at the location of an emitter. For a given cross term, three outcomes may be possible. Either

that a focused point exists and exists at the location of one of the two emitters, that a focused point

exists and exists at some location in the image at which there is no emitter, or else that no focused

points exist in the resulting image due to the cross term.

Subcase I A: We consider first the possibility that a focused term exists at the location of one

of the two emitters present in the scene.
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Let e1, e2 be the location of two emitters in the scene. Then the contribution to the image for

each of the cross terms from such emitters takes the form

∫
ei2π(t−r(s,z))Q(s, f, z)dC(s, t)dsdt. (7.47)

where dC(s, t) is the data term resulting from either the correlation of the signal at emitter e1 with

the signal at emitter e2 or vise versa. Without loss of generality we will examine the case in which

the term under consideration arises from the correlation of the signal emitted by e1 and received at

the receiver at γ1(s) with the signal emitted by e2 and received at the receiver at γ2(s) at time s.

As we have seen, this results in the backprojection of the product Q(s, f, z)dC(s, t) along the

hyperbola defined by

|γ2(s)− z| − |γ1(s)− z| = |γ2(s)− e2| − |γ1(s)− e1|. (7.48)

Assume that there exists a focused point for these backprojections and let that point be denoted z0

where z0 = e1 or z0 = e2.

We first consider the case where z0 = e2, that is, the case in which a focused point occurs at

the location of the emitter whose signal was recorded at the moving receiver. We shall handle the

case for which z0 = e1 in Subcase I B.

Since z0 is a focused point

|γ2(s)− z0| − |γ1(s)− z0| = |γ2(s)− e2| − |γ1(s)− e1|. (7.49)

for all time steps s. Since z0 = e2 we have

|γ1(s)− z0| = |γ1(s)− e1| (7.50)

which implies

|γ1(s)− e2| = |γ1(s)− e1| (7.51)
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for all s, since we have postulated z0 = e2. This is true if and only if the two emitters lie on the

same circle centered at the stationary receiver.

Thus, a focused point for the cross term data exists at the location of the emitter whose signal

was received at the moving receiver whenever the second emitter is equidistant to the stationary

receiver. If the two are not equidistant then equation (8.35) is a contradiction and no such focused

point exists.

Subcase I B: Now consider the analogous case in which z0 = e1. Similarly in this case we find

that z0 must satisfy

|γ2(s)− z0| = |γ2(s)− e2| (7.52)

for all s. This equation states that the distance from the moving receiver to the focused point at

z0 is equal to the distance from the receiver to the emitter at e2, whose signal it is receiving at all

points along its flight path. Since z0 = e1 we thus have the condition

|γ2(s)− e1| = |γ2(s)− e2| (7.53)

for all s.

However, since we have postulated that there are two emitters so that e1 6= e2 and that γ2(s1) 6=

γ2(s2) for any time step s1 because γ2 is in motion, this is possible only in the case in which the

moving receiver flies a path straight along the perpendicular bisector of the line segment joining

e1 and e2. In the rare case that the moving receiver flies a flight path exactly between two emitters

in the scene, then there will be a focused point due to the cross term of the two emitters at the point

corresponding to the location of the emitter whose signal was received at the stationary emitter.

Thus, when we consider the possibility of the backprojection image containing a focused point

due to a cross term at the location of one of the emitters we find: if two emitters are equidistant

from the stationary receiver, then each emitter is the focused point of the backprojection of the

cross term in which that emitter’s signal is the signal received at the moving receiver. Similarly, if

the moving receiver flies a straight line flight path exactly between two emitters so that it is always
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equidistant from both of them, then each emitter is the focused point of the backprojection of the

cross term in which that emitter’s signal is the signal received at the stationary receiver.

Otherwise, there are no focused points at the location of either emitter due to the cross terms.

In these cases, since a focused point is unique, no other focused points exist in the image due to

that data term.

Subcase II: Now assume that there exists a focused point in the image due to a cross term which

is not located at an emitter’s position. Let this point be denoted by z0 where z0 6= e1 6= e2. As

above we must have that

|γ2(s)− z0| − |γ1(s)− z0| = |γ2(s)− e2| − |γ1(s)− e1|. (7.54)

for all s. As seen previously if z0 is a focused point it must also satisfy

(γ2(s)− z0) · γ̇2(s)

|γ2(s)− z0|
=

(γ2(s)− e2) · γ̇2(s)

|γ2(s)− e2|
(7.55)

for all s.

As seen in the proof of our first theorem, these conditions can be rewritten as

|γ2(s)− z0| − |γ2(s)− e2| = |γ1(s)− z0| − |γ1(s)− e2|. (7.56)

Since γ1(s), e2 and z0 are constants we have

|γ2(s)− z0| − |γ2(s)− e2| = C (7.57)

for C is constant.

In the proof of Theorem 1, we showed these conditions are met if and only if the moving

receiver flies a flight trajectory directly along the perpendicular bisector of the line segment joining

the two points z0 and e2. Otherwise we have reached a contradiction and no such focused point

exists.
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However, if the moving receiver flies a flight path directly along the perpendicular bisector of

the line segment joining the two points z0 and e2, then its distance to each of those points is equal

at all times, thus |γ2(s)− z0| = |γ2(s)− e2|. Therefore C = 0. But the constant C is given by the

equation

C = |γ1(s)− z0| − |γ1(s)− e2|. (7.58)

So, if C = 0 then |γ1(s) − z0| = |γ1(s) − e2|. Thus the distance from the stationary receiver to

the emitter e2 and the cross term focused point z0 is equal. Since e2 6= z0 by assumption we have

that z0 and e2 lie on the same circle centered on the stationary receiver γ1.

Combining this requirement with the one that the moving receiver fly directly between the two

points leaves us with the moving receiver flying a flight path either directly toward or away from

the stationary receiver as was shown in Figure 7.6.

Thus the only focused point which can exist at a location other than the true location of an

emitter due to a cross term is a mirror point which is caused by flying the one flight path we have

disallowed.

Conclusion: The cross terms do not produce focused points in the image except for certain spe-

cific geometries. Those geometries are: 1) When two emitters are equidistant from the stationary

receiver. In this case the cross term due to the signal received by the moving receiver and cross

correlated with the signal received at the stationary receiver will focus at the emitter which trans-

mitted the signal recorded at the moving receiver. 2) When two emitters are at all times equidistant

from the moving receiver, that is, when the moving receiver flies a trajectory along a straight line

between two emitters. In this case, the cross term due to the signal recorded at the stationary re-

ceiver and cross correlated with the one received at the moving receiver will focus at the location

of the emitter whose signal was received by the stationary receiver.

Thus, excluding the flight path in a direct line with the stationary receiver, the only focused

points for any family of back projection hyperbolas in the image are the emitter locations, regard-

less of the flight path of the moving receiver. Furthermore, with the exception of a few special

cases, the focused points will be due to the diagonal terms in our data. �
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We have thus proven that persistent peaks in the final image, due to all data terms, will be those

points which correspond to the location of an emitter in the scene. The contribution to the final

image of the cross terms then will be to gradually blur out along the envelope of the family of

backprojections as the receiver travels along its path.

We can further illustrate these effects with some numerical simulations.

7.2 Numerical Examples
We consider first the case in which two emitters are equidistant from the stationary receiver. In

figure 7.8 we show examples of some of the hyperbolas in the family of backprojection curves for

the two cross terms which arise from the emitters shown. In these examples we continue to use our

previous flight path geometry in which the stationary receiver is located at γ1(s) ≡ (10, 20) while

the receiver in motion travels from γ2(s0) = (0, 0) to γ2(sT ) = (20, 0).

(a) Examples from the family of curves for the left-
most emitter.

(b) Examples from the family of curves for the right-
most emitter.

Figure 7.8: The families of backprojection curves for the two cross terms arising from two emitters equidis-
tant from the stationary receiver.

Here we can see that, as we have proven, when the two emitters present in the scene are

equidistant from the stationary emitter, the cross term backprojections will constructively interfere

at the locations of the two emitters. In such a case, the peaks in the image corresponding to the
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location of the two emitters will be strengthened by the cross term effects and no phantom streaks

will appear in the final image.

The simulated SASL image for this scene is shown in figure 7.9. As predicted the emitters

appear clearly with no evidence of any phantom effects from the cross terms present in the data.

Figure 7.9: The SASL image for two emitters at (9.5, 9.5) and (10.5, 9.5) with receivers located at (10,20)
and flying from (0,0) to (20,0).

The effect of the addition of the cross terms can be clearly seen by examining the image which

results from the backprojection of our current data model with that which results from the data

when the signals are assumed to be separable prior to the cross correlation. In the separable case

the cross terms are not present in the data. When the two images are displayed on the same scale,

the result is that the peaks are lower in the image generated from the separable data because the

cross terms contribute to their height. This is seen in figure 7.10.

Next we consider the case in which two emitters are located in the scene but are not located

equidistant from the stationary receiver. A collection of some of the curves in the family of back-

projections is shown for both cross terms for an example of this case in figure 7.11.

In figure 7.11a we display examples of the family of curves for the case in which the signal

from the emitter at e1 = (9.7, 9.4) is received at the moving receiver. In figure 7.11b we display
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(a) The cross term case. (b) The seperable case.

Figure 7.10: Comparison of the separable and non-separable cases for two emitters equidistant from the
stationary receiver.

curves from the case in which it is the emitter at e2 = (10.5, 10.7) whose signal is received at the

moving receiver.

In both cases it is clear that the envelope of the family is non-degenerate and that, therefore,

no focused point exists. Thus, we expect that as the flight path lengthens, the impact of the cross

terms in the creation of phantoms will be gradually diminished leaving the peaks at the emitter

locations standing out.

(a) Examples from the family of curves for e1 =
(9.7, 9.4) received at γ2(s).

(b) Examples from the family of curves for e2 =
(10.5, 10.7) received at γ2(s).

Figure 7.11: Examples from the families of the backprojection curves for two cross terms.

Figure 7.12 shows the progression of images which result from gradually longer data collec-

tions of two emitters positioned at the same locations seen in figure 7.11. In figure 7.12a the
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contributions from the cross and diagonal terms appear to be of roughly equal strength. As the

aperture lengthens the cross term phantoms at first forms the semblance of a peak between the two

emitters; however as predicted, as the data collection lengthens the peak blurs and the effects of the

cross terms are gradually spread along the envelope of the family of curves reducing their impact

on the overall image.

(a) γ2(s) = (0, 0) to (5, 0) (b) γ2(s) = (0, 0) to (10, 0).

(c) γ2(s) = (0, 0) to (15, 0) (d) The full 20km flight path.

Figure 7.12: SASL images for two emitters with a gradually lengthening data collection.

We now examine a combination of the last two cases. In this example we have three emitters

in the scene which form a triangle so that two of the emitters are equidistant from the stationary

receiver whilst the third is located between them and closer to the stationary receiver. This example

is shown in figure 7.13. Here, as before, we witness that the effect of the cross terms in the creation

of phantoms in the image is significant for short data collections, however, as the data collection

lengthens these effects gradually disappear in the finial image. However, it is important to note in
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(a) γ2(s) = (0, 0) to (5, 0) (b) γ2(s) = (0, 0) to (10, 0).

(c) γ2(s) = (0, 0) to (15, 0) (d) The full 20km flight path.

Figure 7.13: SASL images for three emitters with a gradually lengthening data collection.

figure 7.13d that the focusing effect of the cross terms at the location of the emitters causes the two

emitters in the lower portion of the image to have significantly higher peaks than that seen for the

upper emitter.

This could lead one to believe that the two emitters near the bottom of the image are trans-

mitting a significantly stronger signal. In fact, in this example, the strength of all three emitters

is identical, the extra height of the lower peaks in this case is merely an artifact of their positions

relative to the stationary emitter.
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Chapter 8

THREE DIMENSIONAL SASL

In previous chapters we have examined and simulated only a two dimensional version of the

source localization problem in which the receivers are constrained to a flight path in the ground

plane. This was done for simplicity in introducing the subject as well as for numerical efficiency

in simulating the SASL imaging process. We shall now consider the three dimensional case in

greater detail and examine how a truly three dimensional geometry affects the formulation of the

SASL image.

First we note that all previous analytical work in deriving the model of the data terms and the

backprojected image has been done in a dimensionally agnostic way so that the equations apply

equally well to a two dimensional planar geometry embedded in a three dimensional medium as

they do to the case in which the receivers fly in some three dimensional space above the ground

plane.

As a brief reminder of this previous work, recall that our data is modeled by the equation

d(s, t) =

∫
e−i2πif(t−r(s,y,y′)/c0)A(s,y,y′)T (y,y′)dydy′df (8.1)

which can be rewritten as a sum of diagonal terms corresponding to the emitter locations and cross

terms which have undesirable effects on the final product. In this way we rewrite d(s, t) as

d(s, t) =

∫
e−i2πif(t−r(s,y)/c0)A(s,y)V (y)dydf (8.2)

+

∫
e−i2πif(t−r(s,y,y′)/c0)A(s,y,y′)W (y,y′)dydy′df (8.3)

where W (y,y′) = T (y,y′)− V (y).
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We then use the backprojection scheme derived in Chapter 7 to obtain the image

I(z) =

∫
ei2π(t−r(s,z)) χ(s, f, z)η

A(s, z)B̃(f)
D(s, f)dsdf. (8.4)

In Chapter 7 we demonstrated that, for a two dimensional data collection geometry, this image

is built up from the projection of the data along the hyperbolas satisfying

|γ2(s)− z| − |γ1(s)− z| = |γ2(s)− ei| − |γ1(s)− ej| (8.5)

where ei and ej correspond to the location of emitters in the scene and we proved certain properties

for the families of such hyperbolas. We shall now examine the effect of allowing the flight paths

γ1(s) and γ2(s) to contain a height component. We will first examine the case in which the two

receivers fly at some height h above a flat ground plane. We will then move to examining the case

where one receiver is a stationary ground based platform and the other flies at some constant height

h above the ground. We leave the more general case of receivers with a varying height component

for future work.

It should be clear that, for a given s, equation (8.5) defines a hyperboloid in three dimensions

with the foci being the location of the two receivers. For simplicity in the following calculations,

for a particular time s1 defining two receiver positions γ1(s1) and γ2(s1), let a coordinate axis be

defined such that γ1(s1) = (−d, 0, 0) and γ2(s1) = (d, 0, 0) where

2d = |γ1(s1)− γ2(s1)| (8.6)

in the original coordinate setting of the scene. Then the hyperboloid of TDOA defined by (8.5) can

be written in canonical form as
x2

a2
− y2

b2
− z2

b2
= 1 (8.7)

where a is half the TDOA

2a = |γ2(s)− ei| − |γ1(s)− ej| (8.8)
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and b is given by

b2 = d2 − a2 (8.9)

[43, 44].

Let both receivers fly at a constant height h above the ground plane. In our coordinate sys-

tem then the ground plane is located at −h. Then, the intersection of the ground plane with the

hyperboloid of TDOA can be derived as follows:

x2

a2
− y2

b2
− h2

b2
= 1 (8.10)

x2

a2
− y2

b2
= 1 +

h2

b2
(8.11)

x2

a2(1 + h2

b2
)
− y2

b2(1 + h2

b2
)

= 1 (8.12)

which is the canonical form of a hyperbola, x
2

A2− y2

B2 = 1, withA2 = a2(1+h2

b2
) andB2 = b2(1+h2

b2
).

Thus, as we had previously stated without proof, the intersection of the three dimensional

surface of TDOA with the ground plane is a hyperbola. Thus, in the three dimensional case, as

in the two dimensional case, the set of backprojections will be a family of hyperbolas in the the

plane.

The foci of the intersection hyperbola can be derived from equation (8.52). Using the fact that

B2 = D2 − A2, where D is half the distance between foci in the ground plane, we have

D2 = B2 + A2 = b2 + h2 + a2 + a2h
2

b2
(8.13)

= d2 + h2 +
a2h2

d2 − a2
. (8.14)

Substitution of our expression for d and a produces

D2 =

(
1

2
|γ1(s)− γ2(s)|

)2

+ h2

+
2h2

(
1
2
(|γ2(s)− ei| − |γ1(s)− ej|

)2

|γ1(s)− γ2(s)| − (1
2
(|γ2(s)− ei| − |γ1(s)− ej|)2

.

(8.15)
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Recall that 2D is the distance between the foci of the hyperbola in the plane. Note that, since

h2 and a2h2

d2−a2 are strictly positive, equation (8.14) implies that D ≥ d, with equality occurring

only in the case h = 0. Thus the distance between the foci of the the intersection hyperbola will

always be greater than the distance between the two receivers unless the receivers are located in the

ground plane. Furthermore, the difference in these distances increases as the height of the receivers

increases.

Since the ground plane intersects the hyperboloid at a slope of zero with respect to the axis

defined by the two receivers, the foci of the intersection hyperbola must lie on the same axis. Thus,

we can determine the location of the foci of the hyperbola of equal TDOA in the ground plane by

simply taking the projection of γ1(s) and γ2(s) into the ground plane, call these projections γ̃1(s)

and γ̃2(s) respectively, and adding the vector of length D from the center point 1
2
(γ̃1(s) + γ̃2(s))

in the direction of each of the two projected receiver positions. This will give us foci locations

which will better allow us to characterize the family of backprojections. Heuristically, these foci

positions at the positions which would give rise to the hyperbola of TDOA in the ground plane if

the receivers were located in the two dimensional ground plane rather than above it at height h.

Information about how these families of hyperbolas behave with respect to the two dimensional

case may aid in the construction of optimal flight paths which is something we hope to pursue in

future work.

Mathematically these foci positions can be written as

Γ1(s) =
1

2
(γ1(s) + γ2(s)) +D · γ1(s)− γ2(s)

|γ1(s)− γ2(s)|
(8.16)

Γ2(s) =
1

2
(γ1(s) + γ2(s)) +D · γ2(s)− γ1(s)

|γ1(s)− γ2(s)|
(8.17)

where we have used Γ1(s) and Γ2(s) to denote the positions of the foci associated with the receivers

γ1 and γ2 respectively. The first consequence of these expressions is that the focus location Γ1 will

depend not only on γ1 but also on the position of γ2. Thus, if γ1 is stationary and γ2 is in motion,

then the location of the focus Γ1, will also be in motion, even though γ1 is not.

126



We hope that a characterization of this motion may help us to better understand the backprojec-

tion families and thereby to choose flight paths which are better suited to the scene on observation.

Some of our initial efforts to characterize this behavior are discussed in Appendix E.

An important question however, is whether this motion has any bearing on our previous proofs

which demonstrated that the only persistent peaks in the SASL image would be the location of

the emitters in the scene. Before proceeding to numerical simulations of various data collec-

tion geometries in three dimensions, and the resulting SASL images produced, we first prove two

corollaries to our previous theorems. These corollaries demonstrate that the previous results in

two dimensions hold in the three dimensional case when one receiver is either a stationary ground

based receiver or a hovering receiver.

Corollary to Theorem 1: Let two receivers observe a scene from a three dimensional flight

path with one in motion and the other stationary and let the receiver in motion fly at a constant

height h above the ground plane. If the receiver in motion flies any flightpath through or around the

target scene for which its velocity vector is not aimed directly at the the stationary receiver then:

If the family of hyperbolas, over which a data term is backprojected according to the imaging

operator defined in equation (6.87), has a focused point, that focused point is unique.

Proof: From the proof of Theorem 1 we have that

|γ2(s1)− z0| − |γ2(s1)− z1| = |γ2(s2)− z0| − |γ2(s2)− z1| (8.18)

where z0 is a focused point in the SASL image and z1 is a hypothesized second focused point.

In three dimensions this implies that the difference in the distance from the second receiving

platform to each of the points is equal as the platform moves from γ2(s1) to γ2(s2). Since we have

postulated that z0 6= z1 the platform must move along some hyperboloid with the two focused

points as the foci.

As before, this can be more clearly seen by setting |γ2(s1)− z0| − |γ2(s1)− z1| = C where C

is constant. This is just a specific realization of a single point along the flight path of γ2(s). Then

we have
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|γ2(s)− z0| − |γ2(s)− z1| = C (8.19)

where z0 and z1 are fixed.

Allowing s to vary around s2 it is clear that this equation traces out a portion of a hyperboloid

with its vertex in the ground plane, foci at the locations z0 and z1, and containing the point γ2(s2).

Thus, in physical terms, this condition constrains the flight path of the moving receiver to be on

the two dimensional surface of some hyperboloid rising out of the ground plane.

If we allow the perpendicular bisector of the line segment joining z0 and z1 to form the x-

axis of a new coordinate system and the line between z0 and z1 to form the y-axis, the receiving

platform must follow a flight path constrained to the surface of some hyperboloid like the one

shown in Figure 8.1.

Note in Figure 8.1 that, although the hyperboloid will extend below the ground plane we can

safely constrain our receiver to the half of the hyperboloid located above it, though this fact will

not figure into our proof. Note also that the hyperboloid shown is merely a single example of

the infinite number of such hyperboloids which satisfy our conditions at this point. We will soon

see, that only one such member of this family of hyperboloids satisfies all the constraints that we

may place on this family, and that this hyperboloid will be the degenerate case of a plane located

between the two focused points.

(a) A side view of the scene. (b) A frontal view of the scene.

Figure 8.1: An example of a hyperboloid surface constraining the flight path. The light green plane here
denotes the ground plane on which the emitters are located.
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As mentioned in our proof of the first theorem, it is certainly possible for the moving receiver

to fly any other flight path, however, if it does so then we have reached a contradiction and our

conclusion is already proven. Thus we assume that the receiver’s flight path is constrained to one

of these surfaces.

In equation (7.19) we demonstrated that a second necessary condition for z1 to be in the enve-

lope of the backprojection family given that z0 is a focused point is that

|γ2(s1)− z0| − |γ1(s1)− z0| = |γ2(s1)− z1| − |γ1(s1)− z1|. (8.20)

However, we have now gone further and shown that, for a second focused point to exist, the flight

path of the moving receiver must be constrained to one of a family of hyperboloids intersecting the

ground plane. That is, |γ2(s) − z0| − |γ2(s) − z1| = C for some constant C. Therefore equation

(8.20) implies

|γ1(s)− z0| − |γ1(s)− z1| = |γ2(s)− z0| − |γ2(s)− z1| = C. (8.21)

Thus, for z1 to be a focused point of the family, the stationary receiver γ1(s) must also lie on the

same hyperboloid that constrains the flight path of γ2(s). In practice this should be easily avoided.

However, as before, we can go further and show that of the infinite number of hyperboloids in

this family, only the degenerate case, that is, the the case for which C = 0 and the ‘hyperboloid’

is actually a plane which contains both receivers at all points along the flight path, allows for the

existence of a second focused point.

First let the stationary receiver γ1 be at a height h above the ground so that it hovers at the same

height as the moving platform. Then we may define a coordinate system similar to that defined in

chapter 7. This is shown in figure 8.2.

Here the coordinates shown in black are defined by the line z0z1 with the ground plane defined

as the plane for which z = 0, where z is the third axis of the coordinate system. As in chapter 7,

we can define a second coordinate system shown in red using the locations of the two stationary
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Figure 8.2: A top down view of a two coordinate system representations of the scene under observation.

receivers. We denote this second coordinate system by (x̃, ỹ, z̃). As before, since γ2 and γ1 are

located on the same hyperboloid at the same height, the angle θ that the x̃-axis intersects the y-axis

with must be between 0 and π/2.

The location of the two focused points with respect to this second coordinate system are given

by

z0 =
(
Ix − (z0 − I) cos(θ), (z0 − I) sin(θ), 0

)
(8.22)

z1 =
(
Ix + (z0 + I) cos(θ), (z0 + I) sin(θ), 0

)
. (8.23)

Similarly to our proof of Theorem 1, we may define an elliptic cylindrical coordinate system

(µ, ν, z) based on γ2 and γ1. Where

x̃ = a cosh(µ) cos(ν) (8.24)

ỹ = a sinh(µ) sin(ν) (8.25)

z̃ = z. (8.26)
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In order for z1 to be a focused point it must be true that it lies on the same hyperbola of

intersection formed by the hyperboloid of TDOA and the ground plane as z0 for all locations of

γ2(s). In our elliptic cylindrical coordinate system, z0z = z1z = 0 because the ground plane is flat

and both emitters are located on the ground. Thus, for z1 to be a focused point we must have

z̃0 = (a cosh(µ0) cos(ν0), a sinh(µ0) sin(ν0)) =
(
Ix − (z0 − I) cos(θ), (z0 − I) sin(θ), 0

)
(8.27)

z̃1 = (a cosh(µ1) cos(−ν0), a sinh(µ1) sin(−ν0)) =
(
Ix + (z0 + I) cos(θ), (z0 + I) sin(θ), 0

)
.(8.28)

However, this is the same condition which we examined in our proof of Theorem 1 in chapter

7 (see equations (7.33)-(7.36)). There we found that these equations imply that θ = 0 for all points

along the flight path and that θ = 0 implies that the hyperboloid on which the two receivers lie is

the flat plane which bisects the line segment z0z1 and meets the ground plane at a right angle.

The case in which the stationary receiver is not at the same height as the moving receiver is only

slightly more complicated. In the case in which the moving and stationary receivers are confined to

the same hyperboloid, but do not necessarily occupy the same height in the scene a few additional

details need to be explained. As previously mentioned, when the receiver in motion is constrained

to fly at a constant height h within the hyperboloid defined by |γ2(s)− z0| − |γ2(s)− z1| = C, its

path must follow along some hyperbola at a height above the ground plane; let this height be h2.

Similarly, regardless of its height, the stationary receiver must also be on some hyperbola at a

height h1 above the ground plane not necessarily equal to h2. Note that we could have h1 = 0 for

the case in which our stationary receiver is located on a short tower near our scene of interest for

example. This situation is shown graphically in figure 8.3.

This more expansive data collection geometry can be broken down into a few broad cases. By

treating each of these cases in turn we can show that in every case the resulting data collection

geometry can be shown to produce an equivalent set of conditions on the locations of z0 and z1 to

those found in equations (8.27) and (8.28).
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Figure 8.3: The two hyperbolas on which the receivers are located within the hyperboloid constraining the
receiver locations. These hyperbolas are projections onto the ground plane of constant-elevation flight paths
on the hyperboloid.

The cases can be broken down as follows. First the stationary receiver must be either at a higher

or a lower elevation in z than the moving receiver. Second, the two receivers must be either on the

same, or opposite sides of the y-axis. Throughout this analysis we shall assume that the receivers

lie on hyperbolas above the x-axis. Since the hyperbolas which lie below the x-axis are symmetric

to those above the axis, and the orientation of the axis was arbitrarily determined to begin with,

this does not reduce the generality of the proof.

First, we consider the case in which the stationary receiver is at a lower elevation than the

moving one and the two are on opposite sides of the y-axis. This is pictured in figure 8.3 with the

red line drawn between the two receivers.

Here, it is clear that whenever the stationary receiver is on the opposite side of the y-axis from

the moving receiver, the angle that the line between the receivers projected onto the (x, y) plane

makes with the y-axis will be non-zero for all but at most one point (that point being a time at

which γ2y(s) = γ1y(s)) and the point of intersection with the y-axis will be above the x-axis.

Whenever the stationary receiver is at a lower elevation than the moving receiver, this angle will

be less than π/2. In this case our argument from the equal height case carries over exactly.
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Secondly, we consider the case in which the stationary receiver is at a lower elevation than the

moving one and the two are on the same side of the yaxis. This situation is pictured in figure 8.3

with the blue line drawn between the two receivers.

In this case, the intersection of the line between γ2(s) and γ1(s) with the y-axis may, depending

on the location of the two receivers, fall below the x-axis rather than above it. This is also easily

handled. If the line intersects the y-axis below the origin we simply replace I with −I . Similarly

we now have Ix on the negative side of the x̃-axis so that we will have −Ix + (z0 − (−I)) cos(θ)

rather than Ix − (z0 − I) cos(θ) whenever the x̃-axis intersects the y-axis at a point when x̃ is less

than zero. These two changes merely change the overall sign in our expressions for z̃0x and z̃1x.

Thus, by merely canceling a −1 on each side of equation (8.29) we have

a cosh(µ0) cos(ν0) + z0 cos(θ) = a cosh(µ1) cos(ν0)− z0 cos(θ) (8.29)

− a sinh(µ0) sin(ν0) + z0 sin(θ) = −a sinh(µ1) sin(ν0)− z0 sin(θ). (8.30)

Which are exactly the same two conditions arrived at in equations (7.41) and (7.42) which we

found led to a contradiction. Thus, in this case also, the two receivers must lie on the bisecting

plane of z0z1.

Now we consider the case in which the stationary receiver is at a higher elevation that the

moving one. When the stationary receiver is at some height h1 > h2, then it will be located on

a hyperbola whose projection onto the ground plane is at a larger value of y. That is to say, the

stationary receiver will be on a hyperbola which is closer to z0 than the moving receiver. This is

the opposite of the situation pictured in figure 8.3.

First we consider the case when the two receivers are on the same side of the y-axis. In this

case, there will still be a portion of the moving receiver’s flight path for which 0 < θ1 < π/2.

Specifically this will occur whenever γ2y(s) > γ1y(s). If the moving receiver is at any time at a

point with a greater value of y than the stationary one this alone is enough to cause a contradiction.
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This forces our two receivers to be located on the same plane bisecting the line z0z1 as was the

case for the equal height scenario. This is shown in figure 8.4.

Figure 8.4: A stationary receiver at a higher elevation in z will still produce an acute angle for the second
coordinate axis when the moving receiver is at a higher value of y along its flight path.

However, for some locations along this flight, the angle shown in figure 8.4 will be greater than

π/2. This is not a problem. It is a simple matter to point out that whenever the angle shown in

figure 8.4 is greater than π/2 then the angle on the opposite side of the y-axis will be between 0

and π/2. This is shown in figure 8.5. We simply define the angle shown in figure 8.5 to be θ and

define the set of coordinates (x̃, ỹ) according to this angle. Thus, in either case, θ is limited to the

range we have already considered. Thus, all of the trigonometric identities we have used continue

to hold and the proof by contradiction remains valid.

As seen in figure 8.5, this continues to hold true in the final case in which the moving receiver

is on the opposite side of the y-axis as the stationary one.

Figure 8.5: A stationary receiver at a higher elevation in z will still produce an acute angle for the second
coordinate axis when the moving receiver is at a lower value of y along its flight path.
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Thus, regardless of the height of the stationary receiver, in order for a second focused point to

appear in the image, the two receivers must be confined to the same plane bisecting the line z0z1.

Since both receivers have known trajectories which are under the control of the data collection

designer, we can safely assume that this one highly specific data collection path can be avoided.

Thus if the receiver in motion flies at a constant height above the ground plane, whenever a

focused point exists in the family of backprojections it is unique and the envelope contains only

that point regardless of the data collection flight path unless for some portion of the flight path the

moving receiver flies directly toward or away from the stationary receiver’s position. �

Having now extended the proof of uniqueness to the three dimensional data collection case we

turn to the question of existence. Here we extend the second theorem to demonstrate that, as in

the two dimensional geometry previously considered, the only focused points in the image will be

emitter locations.

Corollary to Theorem 2: If, as described in the data collection model of Corollary 1, one

receiver is stationary and not in the same vertical plane with the moving receiver’s flight path, the

only focused points for all backprojection hyperbolas in the image given by equation (8.4) are the

emitter locations regardless of the flight path of the second receiver.

We shall prove this theorem by exhausting the possible cases in which the receiver/emitter

geometries can be set up. We first examine the diagonal terms and then move to the cross terms.

Proof: Case 1: The diagonal terms.

The contribution to the image of any diagonal term in the data takes the form

∫
ei2π(t−r(s,z))Q(s, f, z)dD(s, t)dsdt (8.31)

where dD(s, t) is the data term being backprojection onto the image.

In theorem 2 we proved that the only focused points resulting from the diagonal terms are at

the locations of the emitters corresponding to those terms regardless of data collection geometry.

We will here consider only the cross terms.
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In theorem 2 we also demonstrated that for a given cross term, three outcomes may be possible,

namely either that a focused point exists and exists at the location of one of the two emitters, that

a focused point exists and exists at some location in the image at which there is no emitter, or else

that no focused points exist in the resulting image due to the cross term.

Subcase I A: We consider first the possibility that a focused term exists at the location of one

of the two emitters present in the scene.

Let e1, e2 be the location of two emitters in the scene. Then the contribution to the image for

each of the cross terms from such emitters takes the form

∫
ei2π(t−r(s,z))Q(s, f, z)dC(s, t)dsdt. (8.32)

where dC(s, t) is the data term resulting from either the correlation of the signal at emitter e1 with

the signal at emitter e2 or vis versa. Without loss of generality we will examine the case in which

the term under consideration arises from the correlation of the signal emitted by e1 and received at

the receiver at γ1(s) with the signal emitted by e2 and received at the receiver at γ2(s) at time s.

As we have seen, this results in the backprojection of the product Q(s, f, z)dC(s, t) along the

hyperbola which is the intersection of the ground plane and the hyperboloid defined by

|γ2(s)− z| − |γ1(s)− z| = |γ2(s)− e2| − |γ1(s)− e1|. (8.33)

Assume that there exists a focused point for these backprojections and let that point be denoted

z0 where z0 = e1 or z0 = e2.

We first consider the case where z0 = e2, that is, the case in which a focused point occurs at

the location of the emitter whose signal was recorded at the moving receiver. We shall handle the

case for which z0 = e1 in Subcase I B.

Since z0 is a focused point

|γ2(s)− z0| − |γ1(s)− z0| = |γ2(s)− e2| − |γ1(s)− e1|. (8.34)
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for all time steps s. Since z0 = e2 we have

|γ1(s)− z0| = |γ1(s)− e1| (8.35)

which implies

|γ1(s)− e2| = |γ1(s)− e1| (8.36)

for all s, since we have postulated z0 = e2. This is true if and only if the two emitters lie on

the same sphere centered at the stationary receiver. Since we assume that the emitters are located

within the same flat ground plane this condition amounts to a restriction of the location of the two

emitters to a circle in the ground plane centered at the x, y coordinates of the stationary receiver.

Thus, a focused point for the cross term data exists at the location of the emitter whose signal

was received at the moving receiver whenever the second emitter is equidistant to the stationary

receiver. If the two are not equidistant then equation (8.35) is a contradiction and no such focused

point exists.

Subcase I B: Now consider the analogous case in which z0 = e1. Similarly in this case we find

that z0 must satisfy

|γ2(s)− z0| = |γ2(s)− e2| (8.37)

for all s. This equation states that the distance from the moving receiver to the focused point at

z0 is equal to the distance from the receiver to the emitter at e2, whose signal it is receiving at all

points along its flight path. Since z0 = e1 we thus have the condition

|γ2(s)− e1| = |γ2(s)− e2| (8.38)

for all s.

However, since we have postulated that there are two emitters so that e1 6= e2 and that γ2(s1) 6=

γ2(s2) for any time step s1 because γ2 is in motion, this is possible only in the case in which the

moving receiver flies a path contained entirely within the plane which bisects the line segment
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joining e1 and e2 and is perpendicular to the ground plane. In the rare case that the moving

receiver flies a flight path exactly between two emitters in the scene in this manner, then there

will be a focused point due to the cross term of the two emitters at the point corresponding to the

location of the emitter whose signal was received at the stationary emitter.

Thus, as was the case in the two dimensional data collection geometry, when we consider the

possibility of the backprojection image containing a focused point due to a cross term which arises

at the location of one of the emitters we find: if two emitters are equidistant from the stationary

receiver, then each emitter is the focused point of the backprojection of the cross term in which

that emitter’s signal is the signal received at the moving receiver. Similarly, if the moving receiver

flies a flight path in the bisecting plane so that it is at all times exactly between two emitters with

respect to the ground plane so that it is always equidistant from both of them, then each emitter is

the focused point of the backprojection of the cross term in which that emitter’s signal is the signal

received at the stationary receiver.

Otherwise, there are no focused points at the location of either emitter due to the cross terms.

In these cases, since a focused point is unique, no other focused points exist in the image due to

that data term.

Subcase II: Now assume that there exists a focused point in the image due to a cross term which

is not located at an emitter’s position. Let this point be denoted by z0 where z0 6= e1 6= e2. As

seen in the proof of our first theorem, this implies

|γ2(s)− z0| − |γ2(s)− e2| = |γ1(s)− z0| − |γ1(s)− e2|. (8.39)

If z0 is a focused point it must also satisfy

(γ2(s)− z0) · γ̇2(s)

|γ2(s)− z0|
=

(γ2(s)− e2) · γ̇2(s)

|γ2(s)− e2|
(8.40)

for all s.
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Since γ1(s), e1 and z0 are constants we have

|γ2(s)− z0| − |γ2(s)− e2| = C (8.41)

for C is constant.

In the conclusion to the proof of the corollary to Theorem 1, we showed these conditions are

met if and only if the moving receiver flies a flight trajectory constrained to a plane bisecting the

line segment joining the two points z0 and e2 and making a right angle with the ground plane.

Otherwise we have reached a contradiction and no such focused point exists.

However, if the moving receiver flies entirely within this plane, then its distance to each of

those points is equal at all times, thus |γ2(s) − z0| = |γ2(s) − e2|. Therefore C = 0. But the

constant C is given by the equation

C = |γ1(s)− z0| − |γ1(s)− e2|. (8.42)

If C = 0 then |γ1(s)− z0| = |γ1(s)− e2|. Thus the distance from the stationary receiver to the

emitter e2 and the cross term focused point z0 is equal. Since e2 6= z0 by assumption we have that

z0 and e2 lie on the same sphere centered on the stationary receiver γ1.

Combining this requirement with the one that the moving receiver fly directly between the two

points leaves us with the moving receiver flying a flight path either directly toward or away from

the stationary receiver with respect to its x, y position in the ground plane. Thus the only focused

point which can exist at a location other than the true location of an emitter due to a cross term is

a mirror point which is caused by flying a flight path we have disallowed.

Conclusion: The cross terms do not produce focused points in the image except for certain spe-

cific geometries. Those geometries are: 1) When two emitters are equidistant from the stationary

receiver. In this case the cross term due to the signal received by the moving receiver and cross

correlated with the signal received at the stationary receiver will focus at the emitter which trans-

mitted the signal recorded at the moving receiver. 2) When two emitters are at all times equidistant
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from the moving receiver, that is, when the moving receiver flies a trajectory constrained to a plane

between two emitters that makes a right angle with the ground plane. In this case, the cross term

due to the signal recorded at the stationary receiver and cross correlated with the one received

at the moving receiver will focus at the location of the emitter whose signal was received by the

stationary receiver.

Thus, excluding flight paths which travel directly toward or away from the stationary receiver

with respect to the ground plane dimensions of the receiver positions, the only focused points for

any family of back projection hyperbolas in the image are the emitter locations, regardless of the

flight path of the moving receiver. Furthermore, with the exception of a few special cases, the

focused points will be due to the diagonal terms in our data. �

We have thus extended the previous two proofs to show that persistent peaks in the final image,

due to all data terms, will be those points which correspond to the location of an emitter in the scene

for arbitrary flight paths in three dimensions provided one receiver is stationary. As before, the

contribution to the final image of the cross terms will be to gradually blur out along the envelope

of the family of backprojections as the receiver travels along its path. We will now turn to the

numerical simulation of several flight paths for which these corollaries hold.

8.1 Numerical Examples
We begin by examining the cases in which the stationary receiver hovers above the ground

plane at the same height as the moving receiver. We will examine this case for different heights

above the ground plane. In this case the receivers may be drones such as the common quadcopter

model which have the capability to hover at arbitrary locations above the ground plane.

We will then consider the case of a stationary ground based receiver such as a radar located

on a short tower or other ground based platform. We will then conclude by briefly examining the

case in which the previously stationary receiver flies a short flight path which results in a stationary

focus for the family of backprojections. We examine this final case as an example for future work

of what may be possible with two receivers flying complimentary flight paths.
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In the following examples the stationary receiver is located at γ1(s) = (10km, 20km, h) and

the moving receiver flies from γ2(s0) = (0km, 0km, h) to γ2(sT ) = (20km, 0km, h) where h is

the height of the flight path. The scene is a 2km× 2km square located at the center of the moving

receiver’s flight path and equidistant between receivers at the midpoint of the flight. This flight

path geometry is illustrated in in figure 8.6.

(a) A top view of the 3D flight paths.

(b) A side view of the 3D flight paths.

Figure 8.6: A diagram of the three dimensional data collection geometry.

Using a height of 1km and flying the flight paths discussed above we observe a scene contain-

ing two emitters transmitting identical waveforms as described in Chapter 7. Processing the data

according to our model and performing the backprojection over the hyperboloid of equal TDOA

according to equation (8.4) we construct the SASL image shown in figure 8.7a. We can contrast

this image with the image shown in figure 8.7b. In this second image the flight paths are the same,

however, the two receivers are located at a height of 5km rather than 1km.

We note that in figure 8.7b the cross term phantom effects are worse than in figure 8.7a and the

resolution is slightly worse as well. We can use the mathematical framework for image resolution

derived in section 5.4 to explain these effects.

Recall here that the range direction runs along the image y-axis and the cross range direction

is along the x-axis. Using the parameters above in the resolution formulas we developed, we find
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(a) Receiver height at 1km (b) Receiver height at 5km

Figure 8.7: A scene with two emitters imaged from a flight path above the ground plane.

that the cross range resolution for the 1km height flight path, after algebraic simplification, is

∆CR(h = 1km) =
2πc0

f

(
∆(γ2x(s))

2|γ2(s)− z|

)−1

= 8.9
c0

f
≈ 67m. (8.43)

The cross range resolution for the the 5km heigh flight path is

∆CR(h = 5km) =
2πc0

f

(
∆(γ2x(s))

2|γ2(s)− z|

)−1

= 9.4
c0

f
≈ 71m. (8.44)

Similarly, the range resolution for each case can be computed as

∆R(h = 1km) =
2πc0

Bw

(
(γ2y(s)− zy)

2|γ2(s)− z|
− (γ1y(s)− zy)

2|γ1(s)− z|

)−1

≈ 94m (8.45)

and

∆R(h = 5km) =
2πc0

Bw

(
(γ2y(s)− zy)

2|γ2(s)− z|
− (γ1y(s)− zy)

2|γ1(s)− z|

)−1

≈ 106m. (8.46)

Thus, not surprisingly, the increase in height, which leads to a corresponding increase in dis-

tance to the target, reduces the achieved resolution. However, simply moving the receivers closer

to the target in the range direction will not completely compensate for this loss of resolution. If we

fly a third flight path, this time with both receivers 1.3km closer to the scene center in the range
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component of their coordinates so that the total distance to the target emitters is the same as that

for the first flight path, our calculated resolutions are

∆CR(h = 5km, closer range) =
2πc0

f

(
∆(γ2x(s))

2|γ2(s)− z|

)−1

= 9.4
c0

f
≈ 67m (8.47)

and

∆IR(h = 5km, closer range) =
2πc0

Bw

(
(γ2y(s)− zy)

2|γ2(s)− z|
− (γ1y(s)− zy)

2|γ1(s)− z|

)−1

≈ 109m. (8.48)

Here we see that the reduction in the range component of the distance, which leads to an

increase in the angular coverage, improves the cross range resolution to match that of the flight

path with a height of 1km. However, this change also makes the range resolution slightly worse

than the resolution loss already experienced due to the increase in the distance to the target. The

reason for this is clear from equation (5.29). The reduction in the range distance decreases the

quantify γ2y(s) − zy which has a deleterious effect on the resolvability of targets in range. These

affects can be seen visually by comparing the images produced from each of these two flight paths.

In figure 8.8 we compare the two 5km height flight paths so far discussed. As predicted we

see that the cross range resolution is improved when the receivers are moved closer to the scene

center in the range component of the flight path, but that the range resolution suffers slightly from

the change. The overall effect on the phantoms appears to be a slight reduction in their presence,

but not to the levels seen in figure 8.7a.

Thus we conclude that, when possible, for a given distance to the target scene in range and for

a given length of synthetic aperture, a better image is produced by receivers flying closer to the

ground plane since this produces a larger aperture from which we image the scene.

8.1.1 Tower and Drone Collection

Having established the fundamental effects of a three dimensional data collection and examined

their relation to the two dimensional cases already examined we now consider the image produced
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(a) Receiver height at 5km and 10km from the scene
center in range

(b) Receiver height at 5km and 8.7km from the scene
center in range

Figure 8.8: A scene with two emitters imaged from flight paths at equal heights above the ground plane.

with data collected from a low flying drone and a stationary receiver located in the ground plane

on a fixed tower. This flight path is shown graphically in figure 8.9.

(a) Receivers at a height of 1km

(b) Receivers at a height of 5km

Figure 8.9: A data collection using one moving receiver and one ground based receiver.

Starting from equation (8.7) we can derive the expression for the intersection of the hyperboloid

of TDOA and the ground plane. In our earlier example, the ground plane was located at a constant

height −h below both receivers so that the intersection occurred in the plane z = −h. In this case

the intersecting plane has a more complicated expression.
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Since the stationary receiver is located in the ground plane and the moving receiver is located

at a fixed height h above the ground plane, when the coordinate system is defined by the location

of the two receivers according to γ1(s) ≡ (d, 0, 0) and γ2(s) ≡ (−d, 0, 0), the equation for the

ground plane can be expressed as z = f(x) for some function f .

Here, we know that the ground plane contains the points (d, 0, 0) and (−d, 0,−h). From this

we can find the expression of the ground plane as

z = f(x) =
h

2d
x− h

2
. (8.49)

Thus the curve of intersection is defined by

x2

a2
− y2

b2
−

( h
2d
x− h

2
)2

b2
= 1 (8.50)

x2

a2
− y2

b2
− h2x2

4d2b2
+
h2x

2db2
= 1 +

h2

2b2
(8.51)

x2(4d2b2 − a2h2)

4a2d2b2
− y2

b2
+
h2x

2db2
= 1 +

h2

2b2
. (8.52)

We can determine the kind of conic section this expression defines by examining the discrimi-

nant. [44]

In this case the discriminant is given by

D =
4d2b2 − a2h2

4a2d2b2

1

b2
. (8.53)

So, D > 0 if

d4 − d2a2 − a2h2 > 0. (8.54)

Substituting y2 + h2 = a2 where y is the distance to the target emitter in the ground plane we find

that we require

− h4

d2
− (1 +

y2

d2
)h2 + d2 − y2 > 0. (8.55)
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For the data collection geometry we have defined this occurs whenever h < 13789m. Once

our receiver drone flies above this height the intersection of the hyperboloid with the ground plane

becomes elliptical instead of hyperbolic. This height ceiling will increase as total receiver stand off

from the target emitter increases. As such, it is not a fundamental limit of our method. By flying

farther from the target in the ground plane range direction the receiver can increase its height

without violating this ceiling.

For our purposes 13000m is more than an order of magnitude greater than the height we are

examining. As such we can safely consider the TDOA curves to be hyperbolas in the ground plane

at all times during the data collect.

The resulting SASL image is shown in figure 8.10. We see that, despite the analytic expression

for the backprojections being far more complicated than in any case previously considered, the

resulting SASL image closely matches those of the other data collections so far considered in this

chapter.

Figure 8.10: The SASL image from a ground based and arial receiver pair.

8.1.2 A Two Moving Receiver Example

Recall that it has yet to be determined if a truly stationary receiver is desirable, or if a second

moving receiver provides an advantage in the quality of the SASL image. We have focused on the
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case of a stationary receiver in this document because doing so greatly simplifies the analytic proof

of certain properties of the backprojection. This allows us to make definitive statements regarding

the method’s utility and provide proofs of certain phenomena in the SASL image.

When both receivers are in motion the frequency difference of arrival curves become far more

complicated which adds additional layers of difficulty to the stationary phase arguments we have

previously made. We leave as future work the analytic analysis of these more difficult curves

which may determine whether having one receiver held at a stationary point provides some imaging

benefit, or if some benefit may be obtained by having such a receiver fly a complementary flight

path with respect to the second receiver.

As a first step toward examination of such potential complimentary flight paths we conclude

this chapter with a simulated case in which the second receiver flies a flight path which produces

one fixed focus for all backprojection hyperbolas in the ground plane. Recall that a hovering

craft cannot reasonably approximate a stationary point in the ground plane with respect to the

backprojection hyperbolas when that receiver’s height is well above the plane.

A stationary focus position can be achieved however, by flying a flight path which exactly

compensates for the movement of the focus of the hyperbola in the ground plane with respect to

the backprojections produced. In this way, we illustrate how a realistic flight scenario in three

dimensions can reproduce the same backprojection family seen in the two dimensional model

worked through in Chapter 7.

As seen in equation (8.16), the location of the foci of the backprojection hyperbola in the plane

is a deterministic function of the two receiver positions. We assume that both receiver trajectories

are known and under the control of the operator. Under these conditions, it is possible to design

a flight path for the first receiver which exactly compensates for the motion of the focus of the

backprojection curve with respect to the scene center which is caused by the flight path of the

second receiver.
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In this manner, the first receiver can fly a short flight path nearly parallel to that of the second

receiver which results in the focus position, Γ1, remaining fixed. In such a case, the family of

backprojections mimics that of the examples previously seen in the two dimensional simulations.

As a simple example of what such a path looks like, consider the case shown in figure 8.11.

In this figure the blue line represents the flight path of the first receiver, that is, the receiver

we have previously taken to be stationary. The second receiver flies a straight line flight path

20km long at a height of 5km from a starting location of (0km, 0km, 5km) to an ending point at

(20km, 0km, 5km). Note again that this path is well below (with respect to the y-axis) the visible

patch of the plane shown in figure 8.11.

By flying along the blue trajectory, a distance of roughly 1km, at a height of 5km the first

receiver compensates for the effects of the motion of the second receiver on the position of the

foci in the ground plane resulting in a stationary location for the focus at Γ1 ≡ (10km, 21km)

represented by the red X.

Figure 8.11: A receiver which flies a carefully designed flight path can compensate for the apparent motion
caused by the second receiver resulting in a stationary focus.

A diagram of this flight path is shown in figure 8.12. In this example, both of our receivers

are in motion along a physically realizable path in three dimensional space which produces a

targeted result, in this case a stationary point for the family of backprojections. We make no claim

that producing a stationary focus point for the family has a significant benefit in image quality.
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Figure 8.12: Diagram of the flight path which compensates from the virtual motion of a hovering receiver.

We illustrate it here merely to showcase the kind of complementary flight paths which it will be

possible to design with the full characterization of the family of backprojections we have derived

above. We leave for future work the determination of the most desirable characteristics to be

targeted in the determination of the flight path.

For completeness in our simulations we consider both the case when the two receivers are

flying at a height of 1km above the ground plane and the case in which they are 5km up. The

images produced from these flight paths are simulated in figure 8.13. In each of these cases it is

difficult to detect a large difference between this case and the case of the hovering receiver.

This is consistent with our observations in Appendix E that the change in the focus location is

rather small in comparison to the motion due to the flight path of the second receiver. As such, we

should not expect that this ‘motion compensation’ flight path would have a strong impact on either

improving or deteriorating the quality of the image.

Indeed, as we have said, there may be nothing desirable about having such a stationary focus

for the family of backprojections. We have concluded with this case merely as a simple example

of how a detailed knowledge of the nature of the family of backprojection curves may aid our

investigation into the more complicated flights paths which are possible when both receivers are

in motion. It may be possible to construct more detailed flight paths for the two receivers which
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(a) Receivers at a height of 1km (b) Receivers at a height of 5km

Figure 8.13: The case of both receivers in motion with one flying so as to produce a stationary virtual focus,
for two different heights above the ground plane

maximize the angles viewed for the scene under surveillance or take account of a priori knowledge

of the scene to maximize final image quality. We leave the investigation of such possibilities to

future work.

Now that we have built a robust model of three dimensional data collection and simulated

the creation of SASL images from three dimensional flight paths we will turn to the final step in

providing a theoretical demonstration of the feasibility and utility of this approach, the creation of

a SASL image from noisy signals.
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Chapter 9

SASL WITH NOISY SIGNALS

Now that we have simulated our source localization procedure using a realizable three dimen-

sional data collection we will turn our attention to the impact of noise on our ability to image, and

thereby localize, target emitters in a scene of interest.

Random thermal motion of charged particles,whose temperature is above zero Kelvin, causes

all objects in the universe to emit electromagnetic waves. These waves are referred to as thermal

noise and are always present in the reception of any real-world EM signal. While all objects,

including extraterrestrial ones, contribute to the noise present in a received signal, the thermal

noise generated by a radar’s own internal components usually dominates the contribution of all

other sources of grey body radiation if the radar operates at frequencies in the microwave range or

above. [28]

Environmental noise arises from everything visible to the radar, including the Sun, the ground,

and galactic sources entering through the atmosphere. At frequencies below 1GHz cosmic noise is

a significant contributor to the total noise level, but is a minor source of interference at frequencies

above this. The nearness of the sun makes it a significant contributor to the environmental noise

level, however, this effect can be mitigated by antenna gain if the receiving antennas are not pointed

toward the sun’s position. [28]

For our purposes we shall assume that the internal noise of the receiver systems dominates the

environmental noise to a level where environmental effects can be safely neglected. Thermal noise

in the receiver is well modeled by white noise, that is, noise for which the expected value obeys

E[n(t)n̄(t′)] = Pnδ(t− t′), where Pn is the noise power. Such noise is uniformly distributed over

all radar frequencies, though only noise in the range of frequencies capable of being detected by

our antennas will have an impact on our ability to form an image of the target emitters. [2, 28]

The standard way to describe the effect of noise on the received signal is the Signal-to-Noise

Ratio (SNR). This is the ratio between the signal power and noise power at the receiver. The

151



noise power at the receiver will be proportional to the receiver bandwidth since, as we have just

stated, the noise is equally distributed across all frequencies. Thus an increase in the range of the

frequencies recorded by the receiver corresponds to an increase in noise power.

Since the noise impacting the signal is created by the thermal motion of charged particles within

the receiver, the receiver’s internal temperature is also proportional to the power of the recorded

noise. Thus we have that the noise power Pn is related to the receiver bandwidth and temperature

by

Pn = kTsB (9.1)

where k is a constant of proportionality. For our case it turns out that when B is measured in Hertz

and Ts in Kelvin k is Boltzmann’s constant, that is k = 1.38× 10−23 watt-sec/K. [28]

The power of the recorded signal is similarly given by

Pr =
PtGtGr

(4π)2R2
(9.2)

where Pt is the transmitted power, Gt and Gr are the gains of the transmitting and receiving anten-

nas respectively, and R is the range from the emitting antenna to the receiving one. [28]

If the system consists of both an isotropic transmitting and receiving antenna the signal power

is simply

Pr =
Pt

(4π)2R2
. (9.3)

Thus, the SNR for a signal recorded at an isotropically receiving antenna which was transmitted

from an isotropic antenna somewhere in the scene is given by

SNR =
Pt

(4π)2R2kTsB
. (9.4)

The post processing power of a recorded signal is can be measured by calculation of the integral

Pt =
[∫
h(t)s̄(−t)

]2 where h(t) is the filter we apply to the recorded signal. In our case, the filter

for the signal recorded at receiver γ2(s) is the signal recorded at γ1(s) and we apply the filter via
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cross correlation. The peak of the resulting cross correlation function is then the signal power for

the recorded slow time position s.

Similarly the post processing noise power for each look is determined by applying the same

correlation process but to the noise signal alone. Thus one applies the same filter to the noise

present at the receiving antenna. We then measure the noise power as Pn = E|ηn(τ)|2 = σ2
n where

σ2
n is the variance and ηn(τ) is the post processed noise.

Mathematically we have

SNR =
|ηs(τ)|2

E|ηn(τ)|2
=
|ηs(τ)|2

σ2
n

(9.5)

where

ηn(τ) =

∫
h(τ − t′)n(t′)dt′ (9.6)

and

ηs(τ) =

∫
h(τ − t′)s(t′ − τ)dt′ (9.7)

for some applied filter h(t).

Numerically this can be accomplished by simulating a signal reception at some time step s1

and generating a random noise vector of the same length, call this vector n(t). We store both the

signal and noise vectors separately for the calculation of the SNR. The two are then added together

in order to form the noisy data measurement.

We then process the noisy data in order to form the SASL image. Simultaneously, we process

the noiseless data and the data vector containing the noise only in a manner identical to that of the

noisy data. We can then measure the SNR in the post processing data by measuring the peak power

of the signal and divide by the variance of the noise vector.

This can also be done for the SASL image as a whole to determine the SNR of the final image

once all of the slow time snap shots have been integrated into the image. The SNR for the final

image should be higher than that measured in the single look SNR calculations since each look

should add further improvement in the image SNR. Once this has been done it becomes possible

to set the output SNR to any desired level by judiciously adjusting the input power of the noise.
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We can accomplish this by carefully tracking the effect of multiplying the input noise by a

scaling constant. Recall that the noise power is measured by var(ηn(τ)), so the power of the same

noise when multiplied by some constant C before signal processing is then

P̃n = var
(∫

h(τ − t′)(Cn(t′))dt′
)

= var
(
C

∫
h(τ − t′)n(t′)dt′

)
= C2var

(∫
h(τ − t′)n(t′)dt′

)
= C2var(ηn(τ) = C2Pn.

(9.8)

Thus, the resulting SNR is given by

SNR =
Ps
C2Pn

. (9.9)

By simple algebra we can then determine the appropriate scaling of the noise in order to set the

output SNR to any desired value as

C =

√
Ps

(SNR)Pn
. (9.10)

All of this analysis holds true for a traditional active SAR imaging system, for a SASL imaging

system however, there is a complication.

The traditional method of measuring SNR described here assumes that one is dealing with

purely additive noise and a deterministic filter which is applied to the received signal, traditionally

this is the matched filter we encountered in Chapter 3. In our problem however, the role of the

filter is played, not by a time reversed copy of the transmitted signal, but by the copy of the signal

which is recorded at the second receiver. This copy is of course a noise contaminated version of

the transmitted signal.

Thus, when we apply our filter to the additive noise present in the signal recorded at receiver

γ1, the result is

ηn(s, τ) =

∫
h(τ−t′)n(t′)dt′ = [s2(s, t)+n2(t)]?n1(t) = s2(s, t)?n1(t)+n1(t)?n2(t). (9.11)
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Thus, our filter has a random component due to the presence of noise which causes the noise

to behave multiplicatively in the processed result, not simply additively as we have previously

assumed. This greatly complicates the application of traditional noise measurement methodologies

to the calculation of the post processing SNR. An analysis of these complications is beyond the

scope of this work and is left to future efforts.

We can, however, safely calculate the input SNR, that is, the SNR before any signal processing

is done, and measure our noise contributions rigorously using this method. We can also carry out

the numerical SNR calculations described above and achieve a non-rigorous measure of the post

processing noise both for the single-look processing step, and for the SASL image as a whole. It

is important to remember though, that while these calculations hold a heuristic value in giving the

reader an idea of the noise level present in each portion of the SASL imaging process leading to

the final image output, only the input SNR level is strictly supported by the established theory of

additive noise.

As an example of the additional complications posed by the noise present in what may be

termed the reference channel, that is the source of the signal which we use in place of the tradi-

tional matched filter, we can complete the same analysis carried out in equation (9.8) for the cross

correlation case.

With Pn = var ([s2(s, t) + n2(t)] ? n1(t)) we have

P̃n = var
(∫

h(τ − t′)(Cn(t′))dt′
)

= var ([s2 + Cn2(t)] ? Cn1(t))

= var
(
C2n1(t) ? n2(t) + Cn1(t) ? s2(t)

)
= C4var

(
n1(t) ? n2(t) +

1

C
n1(t) ? s2(t)

)
≈ C4var (n1(t) ? n2(t) + n1(t) ? s2(t)) = C4Pn.

(9.12)

So we expect that we can achieve a close approximation to our desired post processing SNR

by setting

C = 4

√
Ps

(SNR)Pn
. (9.13)
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For each of the images below we perform the input SNR measurement according to

SNRIn =
|sH1 (t)s1(t)|2

|nH1 (t)n1(t)|2
(9.14)

where s1(t) is the signal recorded at receiver γ1 for a single slow time step and n1(t) is the additive

noise applied to the signal for the same slow time look. We can then average these measurements

over all slow time positions to arrive at measurement of the input signal to noise ratio.

For each image we also report a measurement of the ‘single look’ SNR for the cross correlated

data, and an SNR for the final SASL image. We do this by measuring the peak power of the result

of cross correlating the noiseless signal recorded at γ1 with the signal data recorded at receiver γ2;

this value becomes our |ηs(τ)|2. We then measure the noise power by processing the noise signal

present in the receiver channel γ1 with the signal data recorded at receiver γ2 and take the variance

of the result. This becomes our σ2
n. The ratio of these two quantities is then the reported single

look post processing SNR.

It is important to reiterate that this value is provided for heuristic purposes. We are here apply-

ing the theory of purely additive noise to a case in which there are multiplicative factors involved.

As previously stated, this provides a useful metric for the purposes of introducing the ideas of

system performance for the purposes of this dissertation, but a fully detailed analysis of the noise

present in the post processing stage is beyond the scope of our work.

We also measure the average noise power present in the final image using a similar process and

report the resulting SNR measurement for heuristic purposes. In each case the SNR is given in

decibels and in each image we continue with the convention of setting the peak point in the image

to a decibel level of 0.

Now that we have established the methods for our calculation of the noise levels present in the

signal reception we can visually examine the affect of various levels of noise on the images. We

begin by imaging a scene with a single emitter and build up to the case of multiple emitters. We

take the receivers to be both in motion flying along the flight path described in figure 8.12 at a

height of 1km above the ground plane.
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(a) The SASL image with:
An Input SNR of -43.7db
A single look SNR of -4.9db
An image SNR of 9.5db

(b) The noiseless cross correlated signal

(c) The post processing noise

Figure 9.1: A single emitter scene with a high noise level.

(a) The SASL image with:
An Input SNR of -38.8db
A single look SNR of 0.1db
An image SNR of 12.0 db

(b) The noiseless cross correlated signal

(c) The post processing noise

Figure 9.2: A single emitter scene with a moderate noise level.
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(a) The SASL image with:
An Input SNR of -29.3db
A single look SNR of 9.8db
An image SNR of 17.24db

(b) The noiseless cross correlated signal

(c) The post processing noise

Figure 9.3: A single emitter scene with a low noise level.

We can also examine how the image of a target scene appears when multiple emitters are

present and the signal reception is noisy. In figure 9.4 we image a target scene containing 5 identical

transmitting antennas in the presence of the same input noise level shown in figures 9.1 - 9.3.

In these images we see that the emitters are distinguishable from the noise, though not easily at

an input SNR of around −44db. At this level of the noise the distortion of the image is on par with

the artifacts present from the cross term phantoms. As the noise level is reduced the cross term

phantoms begin to dominate the distortion due to the presence of noise in the signal reception.

By the time an input SNR of around −30db is reached the impact of the noise on the image is

negligible compared to that of the artifacts from the cross term effects.

We saw in chapter 7 that increasing the length of the synthetic aperture reduces the strength

of the cross term contributions to the image. One can ask whether increasing the length of the

synthetic aperture provides an improvement in the SASL image degradation due to noise. In the

images below we compare three different data collection geometries. These data collection ge-

ometries are shown in the diagrams of figure 9.5.
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(a) An Input SNR of -43.7db (b) An Input SNR of -38.8db (c) An Input SNR of -29.3db

Figure 9.4: A target scene containing five identical emitters for three levels of noise.

In the following cases we will use these different data collection parameters to examine the

effect on the image of two separate factors. First, we will compare the image formed from the data

collected using the flight path shown in figure 9.5a to that formed from the data gathered from the

flight path in figure 9.5b and 9.5c in order to determine the effects of flying a longer flight path

with a broader angle diversity of the target scene.

Then, we will compare the images created from the data collected in the flight paths shown in

figure 9.5b and figure 9.5c to determine the effect of flying the same flight path, but taking more

slow time samples as the receiver moves along the flight path.

(a) A flight path with 200 slow time
samples

(b) A flight path with 200 slow time
samples

(c) A flight path with 400 slow time
samples

Figure 9.5: The three data collection geometries we are investigating. Note that (B) and (C) are identical
flight paths, but (C) contains twice the number of samples that (B) does.

We begin our analysis by imaging our target scene using the three flight paths described in

figure 9.5 under the condition of a noiseless data collection. In figure 9.6 observe that, just as we
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had already demonstrated in chapter 7, when the flight path is lengthened the image resolution is

improved and the appearance of the cross terms is reduced.

What is important to note here is that the SASL image shown in figure 9.6b is barely distin-

guishable from that shown in figure 9.6c. Both are much more clear than the image in figure 9.6a.

This is a result of the longer synthetic aperture used to form the image. We observe that the use

of twice as many samples along this flight path has little discernible effect on the image formed,

especially compared to the difference made by the flight path used. Thus, we conclude that, in the

noiseless case, the length of the aperture is crucial to image formation, but the number of slow time

samples along the flight path is relatively unimportant.

(a) The image created from the flight
path shown in figure 9.5a

(b) The image created from the flight
path shown in figure 9.5b

(c) The image created from the flight
path shown in figure 9.5c

Figure 9.6: Three images of the same target scene with zero noise for three different data collections.

We contrast this finding with the conclusions which can be drawn from the images in figure

9.7. Here we form three images of the target scene using exactly the same flight path parameters

used to form the images in figure 9.6. However, in this second example the images are formed in

the presence of -43.7db SNR input noise which contaminates the signal reception.

In this example we see that, as expected, the image in figure 9.7b is better than the one in figure

9.7a. However, in addition to this, we find that the image in figure 9.7c is significantly better than

its counterpart in figure 9.7b.
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Additional samples along the flight path integrate coherently in our image. Since the noise in

each measurement is incoherent and uncorrelated with the noise in the previous measurement, the

more samples taken along the flight path, the better the image formed in the presence of noise.

(a) Flight path (A) (b) Flight path (B) (c) Flight path (C)

Figure 9.7: The same target scene with an input SNR of -43.7db for three different data collections.

As a result of this analysis we conclude that, all other factors being equal, flying a longer flight

trajectory and taking additional samples along that flight path will lead to improved image quality

and therefore better emitter detection and localization. A quantitative analysis of the degree of

improvement for each additional sample along the flight path will only become possible once a

rigorous analysis of the post processing SNR is completed. Due to the highly complicated nature

of the interaction of the noise signal with the data processing steps in the SASL imaging process

this is left to future work.
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Chapter 10

CONCLUSIONS AND FUTURE WORK

10.1 Conclusions
In this work we have briefly overviewed the state of the art in source localization techniques

and presented a new method, Synthetic Aperture Source Localization (SASL). This new method

requires at least two spatially separated receivers, of which at least one must be in motion. We

have shown that this method is able to image multiple sources in a scene simultaneously, though

a sizable synthetic aperture must be formed in order to do so. In this way the method is able to

improve upon other methods which are currently employed, such as MUSIC, in the domains in

which it is appropriate.

We have also seen that the use of the SASL imaging technique produces undesirable phantoms

in the image when two or more receivers are highly correlated with one another. We have proven

that, under relatively mild conditions within the control of the system operator, these phantoms can

be minimized by flying progressively longer flight paths. Furthermore, we have shown that such

phantoms will not form persistent peaks in the image at locations other than the locations of true

emitters.

We have shown that the method is capable of imaging target emitters in the presence of noise

and that the effect of noise on the ability to localize target emitters can be reduced by increasing

the number of samples taken along the chosen flight path.

10.2 Future Work
A significant body of work remains to be done in order to fully characterize the use of this

method and determine its efficacy in source localization. Among the remaining work to be accom-

plished are several natural next steps which, if accomplished would round out the theory presented

in this thesis and improve the ground truth fidelity of the modeling work produced herein.
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Firstly, we have assumed throughout this dissertation that the locations of the two receiving

platforms are known with perfect accuracy. In practice this will not be the case and some position

errors will be present. Thankfully, a great body of work already exists in correcting for these errors

in traditional SAR systems. A future effort will be to leverage this work to make the SASL imaging

method more robust to discrepancies in the position of the receivers along the flight path.

Second, although we have thoroughly examined the case of a three dimensional flight path

data collection for the case of two receivers at constant height above a flat ground plane, this

is not entirely realistic. A future effort will be to rigorously characterize flight paths in which

both receivers fly trajectories of varying heights above a non-flat ground plane. This will require

significant effort to determine the TDOA and FDOA curves and will lead to a reexamination of the

stationary phase argument under these general conditions.

Third, it is the current belief of the author that cross term phantom backprojections, even in the

case of correlated emitters, can be shown to be at worst no stronger than the equivalent backpro-

jection of the more powerful of the two emitters under consideration. This could lead to a proof

that, in addition to the non-focusing behavior already demonstrated, the cross terms phantoms will

always be below the peak height of the strongest emitter in a two emitter scene. This too shall be

investigated at a future date along side a more detailed analysis of the overall power of the cross

terms in the image.

Fourth, while we have proven that the envelope of the family of backprojections is degenerate

for diagonal terms and that it is non-degenerate for cross terms under certain conditions, this proof

was done under rather restrictive flight path assumptions. A future effort will be to prove that these

results hold under more general flight paths in which both receivers are in motion along arbitrary

trajectories. With this will naturally come an effort to determine if complementary flight paths can

be chosen that optimize the resulting SASL image and minimize the appearance of phantoms for

arbitrarily placed emitters in a scene.

Finally, we have assumed throughout this work that all emitters and receivers are operating

isotropically and that emitters transmit throughout the duration of the flight path, although they
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may be turning on and off at various times during our data collection. In practice many emitters

of interest will be operating with significant gain along the bore sight of the antenna beam pattern

with negligible energy transmitted along various trajectories leading out from the antenna location.

A more thorough study of the SASL image which we are capable of forming under such conditions

is warranted.

In addition to these efforts a good deal of investigative work remains to be done on the char-

acterization of noise in the SASL measurements and how the processing of the recorded signals

affects the resulting SNR of the final image. This will require a great deal more research into

the processing of noise when the noise behaves multiplicatively. The hope is that further inves-

tigation into this aspect of the problem will provide avenues to more rigorously characterize the

performance behavior of the system in a wide variety of circumstances.

Various extensions of this work may also be considered. Among them, the use of some form

of automatic recognition algorithm, whether deterministic, statistical, or based upon a machine

learning approach, to recognize target emitters in a scene of interest from a SASL image. If such

a method were developed it may open the door to combining work done in finding optimal flight

paths for given target geometries with an AI or gametheoretic approach in real time. Such a system

may be able to take a partially formed SASL image, determine the likely location of a number of

emitters in the scene, and autonomously adjust its flight plan in order to maximize localization of

the hypothesized emitters in the final SASL product.

It is the author’s hope and intention to tackle several of these challenges in the coming years

ultimately leading toward deeper understanding and presentation of the theory of SASL imaging

than is possible in this document given the scope of the effort to be completed.
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Appendix A

THE CROSS CORRELATION FUNCTION

The cross-correlation of two signals provides a measure of the similarity between one signal

and a time delayed version of a second signal. For a single signal recorded at two receivers, the

cross-correlation is a function of the time delay and experiences a peak at the Time Difference of

Arrival (TDOA) of the two recorded signal copies. [12, 45]

The cross correlation of two functions h and g is defined as,

h(t) ? g(t) ≡ f̄(−t) ∗ g(t) (A.1)

where ¯ denotes complex conjugation. This may be written in integral forms as

h(t) ? g(t) =

∫
f̄(τ)g(t+ τ)dτ. (A.2)

If h = g, that is, if one cross correlates a function with itself, then the cross correlation is known

as the autocorrelation. The autocorrelation thus provides a measure of the similarity between a

signal and time delayed replica of itself. The Wiener-Khinchin theorem provides a useful formula

for the autocorrelation in terms of the Fourier transform

h(t) ? h(t) = F−1
{
|H(f)|2

}
(A.3)

where F−1 denotes the inverse Fourier transform and H is the frequency domain version of h so

that H is defined by H(f) = F {h(t)}.

So, the autocorrelation of a function amounts to simply taking the inverse Fourier transform

of the absolute square of the frequency domain version of the function. Put another way, the

autocorrelation of a signal is equal to the Fourier transform of that signal’s spectral density. [46]

[45]
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A more general result known as the Cross Correlation Theorem applies to the cross correlation

of functions which are not identical.

Theorem: Let H(f) = F {h(t)} and G(f) = F {g(t)} be the Fourier transforms of h and g

respectively. Then

h(t) ? g(t) =

∫
h̄(τ)g(t+ τ)dτ =

∫ ∫
H̄(f1)ei2πf1τdf1

∫
G(f2)e−i2πf2(t+τ)df2dτ (A.4)

=

∫ ∫ ∫
H̄(f1)G(f2)e−i2πf2te−i2πτ(f1−f2)df1df2dτ (A.5)

=

∫ ∫
H̄(f1)G(f2)e−i2πf2t

[∫
e−i2πτ(f1−f2)dτ

]
df1df2 (A.6)

=

∫ ∫
H̄(f1)G(f2)e−i2πf2tδ(f1 − f2)df1df2 (A.7)

=

∫
H̄(f1)G(f1)e−i2πf1tdf1 (A.8)

= F−1
{
H̄(f)G(f)

}
(A.9)
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Appendix B

THE METHOD OF STATIONARY PHASE

This asymptotic method applies to integrals of the form

I(λ) =

∫ b

a

eiλφ(t)f(t)dt. (B.1)

The goal of the stationary phase calculation is to determine the leading order contributions to I .

This is done by finding the critical points which contribute the bulk of the total value of I over the

interval [a, b]. We will see that these points are precisely those for which φ′ = 0. [47]

First suppose that φ′(c) 6= 0 for some value c. Then there exists a neighborhood of c denoted

Nc such that φ(t) varies in Nc. If the value of λ is large then λφ(t) is rapidly varying in Nc. Thus,

eiλφ(t) is a rapidly oscillating function in Nc.

Now we consider the integral of eiλφ(t) over the neighborhood Nc.

Ic(λ) =

∫
Nc

eiλφ(t)f(t)dt (B.2)

Since Nc is assumed to be a small neighborhood we may take f(t) to be roughly constant. That is,

we simplify (B.2) by taking f(t) ≈ f(c) to achieve

Ic(λ) =

∫
Nc

eiλφ(t)f(c)dt = f(c)

∫
Nc

eiλφ(t)dt. (B.3)

Thus Ic is the integral over a rapidly oscillating function so that it tends to cancel out over the

interval and we expect the value of Ic to be near zero. The rate of cancellation is increased for

increasing λ, thus the requirement for a large λ mentioned above.

In contrast let us assume that φ′(c) = 0 for some c. Then there exists a neighborhood of c such

that φ(t) is not rapidly varying regardless of the value of λ by which it is multiplied. Thus, the
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integral over such a neighborhood Nc would not be canceled out by rapidly varying oscillations as

it is for the case where φ′(c) 6= 0.

Here we note that the length of the interval Nc(λ) for which λφ(t) is not rapidly varying is

dependent on the value of λ and decreases for increasing λ. Thus Nc(λ) → 0 as λ → ∞ and so

the contribution to the integral I(λ) for any such point c (referred to as a stationary point) goes to

0 as λ goes to infinity. The leading-order contribution to the integral from these stationary points

behaves like 1√
λ

.

Furthermore, it can be shown that the contribution to I(λ) from such stationary points domi-

nates the contribution to the integral from the end points a and b. Thus, it is the coefficient of the

leading order term which dominates any other contributions and is most important for approximat-

ing the integral value. [47]

For our case it is necessary to state the more complicated multidimensional approximation.

Here we have that:

∫
ei2πωφ(x)f(x)dnx =

∑
x0:Dφ(x0)=0

(
1

ω

)n/2
a(x0)

exp[i2πωφ(x0)] exp[i(π/4)sgnD2φ(x0)]√
|detD2φ(x0)|

(B.4)

Where D denotes the gradient, D2 denotes the Hessian, and sgn denotes the signature of the

matrix.

In practice, for our purposes, we use the method of stationary phase, not to approximate the in-

tegral directly, but to determine the critical points of the phase in order to ensure desirable behavior

of the Point Spread Function in a neighborhood of those points. [31]
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Appendix C

DERIVATION OF THE STOLT CHANGE OF

VARIABLES

Let f(λ) be any real valued function. Then from the Fundemental Theorem of Calculus we

have ∫ x

z

f ′(λ)dλ = f(x)− f(z). (C.1)

We may make a change of variables λ = z + µ(x− z) in the integrand above so that

∫ x

z

f ′(λ)dλ =

∫ 1

0

f ′(z + µ(x− z))(x− z)dµ = f(x)− f(z) (C.2)

where the (x− z) factor arising from the Jacobian may be pulled outside the integral, yielding the

expression

f(x)− f(z) = (x− z)

∫ 1

0

f ′(z + µ(x− z))dµ. (C.3)

This process can be extended for use in higher dimensions by application of the Gradient

Theorem for Line Integrals. This theorem states that,

∫
C

∇f · ds = f(b)− f(a) (C.4)

where C is any curve in the plane and b and a are its end points. Considering then x, z as the end

points of such a curve we can write

∫ x

z

∇f(s) · ds = f(x)− f(z) (C.5)

for any such curve.
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Via the change of variables s = z − µ(x− z) with corresponding Jacobian (x− z) we have

that, for an arbitrary function of three variables

f(x)− f(z) = (x− z) ·
∫ 1

0

∇f(z + µ(x− z))dµ (C.6)

as in the single variate case above.

For our particular case we simply let f(x) = r(s,x) which results in:

r(s,x)− r(s, z) = (x− z) ·
∫ 1

0

∇r(s, z + µ(x− z))dµ. (C.7)

We then define

Ξ(s,x, z) =

∫ 1

0

∇r(s, z + µ(x− z))dµ (C.8)

so that

(x− z) · Ξ(s,x, z) = r(s,x)− r(s, z). (C.9)

Fixing x and z allows us to define the Stolt change of variables in equation (4.43) as

(f, s)→ ξ =
f

c0

Ξ(s,x, z). (C.10)
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Appendix D

THE BEYLKIN DETERMINANT

D.1 Analytic Derivation
First recall that we have defined:

r(s,x) = |γ1(s)− x| − |γ2(s)− x| (D.1)

and

Ξ(s,x, z) =

∫ 1

0

∇r(s, z + µ(x− z))dµ (D.2)

where the differentiation takes place over the variable y for r(s, y). Thus we may consider the case

for x, z fixed and for which x = z, which we have already seen is the point which contributes the

bulk of the value of the backprojected image. We thus have

Ξ(s, z, z) =

∫ 1

0

∇r(s, z)dµ. (D.3)

Here we may write

∇r(s, z) =
d

dzxdzy
(|γ1(s)− z| − |γ2(s)− z|) = (−1)

(
(γ1(s)− z) ·Dz

|γ1(s)− z|
− (γ2(s)− z) ·Dz

|γ2(s)− z|

)
.

(D.4)

Recalling that z = [zx, zy, ψ(zx, zy)] we have

Dz =


1 0

0 1

ψ̇(z1, z2)|z1 ψ̇(z1, z2)|z2

 . (D.5)

Thus carrying out the integration above in µ we have:
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Ξ(s, z, z) =

 1 0 ∂ψ/∂z1

0 1 ∂ψ/∂z2

((γ2(s)− z)

|γ2(s)− z|
− (γ1(s)− z)

|γ1(s)− z|

)
. (D.6)

We note here that the two terms on the right hand side of (D.6) are unit vectors pointing from

the location of the receivers to the point z in the scene. For a flat earth we have

Ξ(s, z, z) =

 1 0 0

0 1 0

((γ2(s)− z)

|γ2(s)− z|
− (γ1(s)− z)

|γ1(s)− z|

)
(D.7)

and in the case of a purely two dimensional test system we have:

Ξ(s, z, z) =

 1 0

0 1

((γ2(s)− z)

|γ2(s)− z|
− (γ1(s)− z)

|γ1(s)− z|

)
. (D.8)

In any of these cases it should be clear that we have a 2× 3 system multiplied against a 3× 1

system or a 2× 2 system multiplied against a 2× 1 system so that the result will be a 2× 1 vector.

We may thus write

Ξ(s, z, z) = (Ξ1,Ξ2). (D.9)

This further justifies the previous change of variables (s, f)→ ξ = f
c0

Ξ(s, x, z).

Explicitly for the case of a two dimensional system we have

 Ξ1

Ξ2

 =

 (γ2x(s)− zx)/m2 − (γ1x(s)− zx)/m1

(γ2y(s)− zy)/m2 − (γ1y(s)− zy)/m1

 (D.10)

wherem1 = |γ1(s)−z| andm2 = |γ2(s)−z| and γij(s) denotes the jth component of the position

of the ith receiver. For example γ2x(s) is the x-axis component of the position of the 2nd receiver

at time s.

Recalling that we have defined ξ = f
c0

Ξ(s,x, z) we may write the Beylkin determinant as
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∣∣∣∣ dξ

d(s, f)

∣∣∣∣ =

∣∣∣∣∣∣∣
dξ1
ds

dξ2
ds

dξ1
df

dξs
df

∣∣∣∣∣∣∣ =

∣∣∣∣ fc2
0

∣∣∣∣ ∣∣∣Ξ̇1Ξ2 − Ξ1Ξ̇2

∣∣∣ (D.11)

where the dot notation denotes differentiation by s.

We then must derive Ξ̇1 and Ξ̇2. We therefore compute

Ξ̇1 =
d

ds

(
γ1x(s)− z1

|γ1(s)− z|
− γ2x(s)− z1

|γ2(s)− z|

)
(D.12)

=
γ̇1x(s)|γ1(s)− z| − (γ1x(s)− zx) γ1(s)−z

|γ1(s)−z| · γ̇1(s)

|γ1(s)− z|2

−
γ̇2x(s)|γ2(s)− z| − (γ2x(s)− zx) γ2(s)−z

|γ2(s)−z| · γ̇2(s)

|γ2(s)− z|2

(D.13)

where γ1,x(s) denotes the component of γ1(s) along the x axis.

Simplifying and expanding this expression yields

Ξ̇1 =
γ̇1x(s)

|γ1(s)− z|
− γ̇2x(s)

|γ2(s)− z|
(D.14)

−
(γ1x − zx)

(
(γ1x(s)− zx) ˙γ1x(s) + (γ1y(s)− zy)γ̇1y(s)

)
|γ1(s)− z|3

(D.15)

+
(γ2x − zx)

(
(γ2x(s)− zx) ˙γ2x(s) + (γ2y(s)− zy)γ̇2y(s)

)
|γ2(s)− z|3

. (D.16)

Similarly,

Ξ̇2 =
d

ds

(
γ1x(s)− z2

|γ1(s)− z|
− γ2y(s)− z2

|γ2(s)− z|

)
(D.17)

=
γ̇1y(s)|γ1(s)− z| − (γ1y(s)− zy) γ1(s)−z

|γ1(s)−z| · γ̇1(s)

|γ1(s)− z|2

−
γ̇2y(s)|γ2(s)− z| − (γ2y(s)− z2) γ2(s)−z

|γ2(s)−z| · γ̇2(s)

|γ2(s)− z|2

(D.18)

which simplified and expanded is
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Ξ̇2 =
γ̇1y(s)

|γ1(s)− z|
− γ̇2y(s)

|γ2(s)− z|
(D.19)

−
(γ1y − zy)

(
(γ1,x(s)− zx) ˙γ1x(s) + (γ1y(s)− zy)γ̇1y(s)

)
|γ1(s)− z|3

(D.20)

+
(γ2y − zy)

(
(γ2x(s)− zx) ˙γ2x(s) + (γ2y(s)− zy)γ̇2y(s)

)
|γ2(s)− z|3

. (D.21)

D.2 The Beylkin Determinant for One Stationary Receiver
In Appendix D.1 we derived an explicit expression for the Beylkin determinant. For certain

geometries however, this expression can be significantly simplified. We turn now to the form of

the determinant appropriate to the case of a stationary receiver in the plane with a second receiver

flying a straight line flightpath along the x-axis.

We can eliminate some of the terms in Equations (D.13) and (D.18) by noting that, in our case,

we have one receiver stationary. We have chosen γ1 to correspond to the stationary receiver so that

γ̇1(s) = [0, 0] and γ̇1x(s) = γ̇1y(s) = 0. Furthermore, if the flight path of the second receiver is

confined to the x-axis then γ1y(s) ≡ 0 for all points s.

In this case then, the entire first term of Ξ̇1 vanishes. Then in Ξ̇2 the entire first term vanishes

because γ1(s) is stationary, and so its derivatives are 0 and the second term reduces significantly

because γ22(s) ≡ 0 and so γ̇22(s) = 0. Thus we have

Ξ̇1 = −
γ̇2x(s)|γ2(s)− z| − (γ2x(s)− z1) γ2(s)−z

|γ2(s)−z| · γ̇2(s)

|γ2(s)− z|2
(D.22)

and

Ξ̇2 = −
zy

γ2(s)−z
|γ2(s)−z| · γ̇2(s)

|γ2(s)− z|2
. (D.23)

However, we can also note that γ̇2(s) = [γ̇2x(s), 0] so that the expressions above reduce to:

Ξ̇1 = − γ̇2x(s)

|γ2(s)− z|
+
γ̇2x(s)(γ2x(s)− z1)2

|γ2(s)− z|3
(D.24)

179



and

Ξ̇2 = −z2(γ2x(s)− z1)γ̇2x(s)

|γ2(s)− z|3
. (D.25)

This greatly simplifies the backprojection calculation for our early example simulations. Once

we move into the examination of more general geometries however, the more complex expression

derived in D.1 will become necessary.
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Appendix E

CHARACTERIZING FAMILIES OF

BACKPROJECTIONS IN 3D

In chapter 8 we demonstrated that a receiver which is stationary in a three dimensional data

collection produces a focus for the the family of backprojections which moves in the ground plane

dimensions during the data collection. In this appendix we further investigate the nature of this

apparent motion. The idea behind this effort is that anything which better helps us to understand

the family of backprojections which build up the SASL image will, in the future, have potential

benefit for designing flight paths to optimize the resulting image.

As an example of this effect, two platforms flying (or in the case of a stationary receiver:

hovering) at a height of 1km, as the moving receiver traverses a flight path of 20km will result in

the virtual position of the stationary receiver moving approximately 20m. Thus, the effect of the

height component is that the stationary receiver appears to move in the plane roughly 0.1% of the

distance that the moving receiver does. This is illustrated in figure E.1.

(a) A close up of Γ1 and the projection of γ1 for γ2(s) =
(0km, 0km, 1km).

(b) A close up of Γ1 and the projection of γ1 for γ2(s) =
(20km, 0km, 1km).

Figure E.1: The position of a virtual ’stationary’ receiver changes due to the motion of the moving receiver
at a height of 1km. The blue X is the projection of the receiver position onto the ground plane. The red X is
its virtual position.
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Note that these images are zoomed in so that the separation of the two points is clearly visible.

The moving receiver’s flight path is 20km from that of the stationary receiver and thus very far

below (with respect to the in range coordinate as plotted here) the patch of the plane plotted in the

following figures.

As the height component of the receiver position is increased the virtual motion of the station-

ary emitter is correspondingly increased. At a height of 5km the movement of the virtual receiver

occurs over roughly 1km. Thus at a height of 5km the scene point corresponding to the stationary

receiver travels a virtual flight path roughly 5% as long as that traveled by the moving receiver, see

figure E.2 and note that the scaling is different than in figure E.1.

(a) A close up of Γ1 and the projection of γ1 for γ2(s) =
(0km, 0km, 5km).

(b) A close up of Γ1 and the projection of γ1 for γ2(s) =
(0km, 0km, 5km).

Figure E.2: The position of a virtual ’stationary’ receiver changes due to the motion of the moving receiver
at a height of 5km. The blue X is the projection of the receiver position onto the ground plane. The red X is
its virtual position. Note that the scale is different than that of figure E.1

To further illustrate the magnitude of the effect that receiver height plays in the virtual motion

of a stationary receiver we plot the two previous examples on the same scale in figure E.3. Here we

can see that at a 1km×1km scale the effect of having our receiver at a height of 1km has relatively

little effect on its virtual position, especially when compared to the effect of a 5km height.

It therefore seems reasonable to conclude that, when the two receivers are flying a trajectory

which is close to the ground plane, the two dimensional simulations of the image formation under

the assumption of a stationary receiver should be accurate to reality in at least an approximate
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Figure E.3: The two previous examples on the same scale. The blue X is the projection of the receiver
position onto the ground plane. The red X’s are its virtual positions at the start and end of the flight path at
a height of 1km. The magenta X’s are its virtual positions at the start and end of the flight path at a height
of 5km.

manner. However, when the receivers are flying well above the ground plane under surveillance

a hovering receiver cannot be assumed to behave like a stationary receiver in the plane. In such a

case, the family of the backprojection hyperbolas will not share a common foci as was the case for

our two dimensional work.

It remains to be determined whether this apparent motion in the foci of the backprojection

family will aid or detract from the ability to form an image of the target emitters. It is possible that

the movement of the foci in the ground plane will allow for a slightly broader diversity of angles

which would improve image quality. However, it is also possible that this motion may negatively

impact the image due to unforeseen effects on the cross term phantoms present.

It is important to note that, regardless of the effects of this apparent motion, the three di-

mensional case of a stationary receiver which gives rise to two moving foci is not fundamentally

different from the case of a single stationary receiver and a moving one in two dimensions. The

backprojection techniques previously derived and simulated hold equally well in both cases and

indeed are equally valid for two moving receivers. It was also proven in chapter 8 that these three

dimensional flight paths do not produce additional phantom points when compared to the two

dimensional case.
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Furthermore, when we speak of two receivers flying low enough to the ground plane that a

hovering receiver can be considered to produce an essentially stationary focus, we are not assuming

in the backprojection process that the focus location is stationary and treating the motion as a form

of error. Rather, we are are merely remarking that the various cases and results we have simulated

throughout this dissertation regarding the effect of various emitter geometries on the final image

will be very near reality for such cases.

In chapter 8 we derived an expression for the location of the foci when the two receivers are at

all times located at the same height above the ground plane. We now derive a similar expression

for a receiver pair in which the moving receiver is located at a fixed height above the ground and

the stationary receiver is located in the ground plane. This ground based receiver could perhaps be

a radar located on a fixed tower for example.

We are interested here in determining what can be said regarding the locations of the two foci of

the backprojection hyperbolas in the ground plane for such a data collection. Namely, whether the

stationary ground receiver can be viewed as a stationary focus for the family of backprojections or

if, as was the case above, the foci of the backprojection family move as was the case in the example

above.

We have seen that the backprojections for the case of a moving airborne receiver and a station-

ary ground based receiver can be put into the form

Axxx
2 + Ayyy

2 − 2Bxx+ C = 0 (E.1)

where

Axx =
4d2b2 − a2h2

4a2d2b2
(E.2)

Ayy = −1

b
(E.3)

Bx = − h2

4db2
(E.4)

C = −1− h2

2b2
. (E.5)
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From this expression we can derive the major and minor semiaxes α and β according to

α2 =
∆

λ1D
=

∆

λ2
1λ2

(E.6)

β2 =
∆

λ2D
=

∆

λ1λ2
2

(E.7)

where ∆, λ1, and λ2 are defined below. [43, 44]

We define ∆ as

∆ =

∣∣∣∣∣∣∣∣∣∣
Axx Axy Bx

Axy Ayy By

Bx By C

∣∣∣∣∣∣∣∣∣∣
(E.8)

this quantity is also sometimes referred to as the discriminant of the conic section. [48]

We substitute and simplify in equation (E.8) to obtain

∆ = Ayy

∣∣∣∣∣∣∣
Axx Bx

Bx C

∣∣∣∣∣∣∣ =
1

b2

((
1 +

h2

2b2

)
4d2b2 − a2h2

4a2d2b2
+

b4

16b2d4

)
. (E.9)

The quantities λ1 and λ2 used in (E.6) and (E.7) are the roots of the quadratic

λ2 − (Axx + Ayy)λ+D = 0. (E.10)

Using the quadratic formula −b±
√
b2−4ac

2a
we find that

λ =
1

2
(Axx + Ayy ± Axx ∓ Ayy) (E.11)

so that

λ1 = Axx and λ2 = Ayy. (E.12)
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Thus we find that

α2 =

(
1 +

h2

2b2

)
4a2d2b

4d2b2 − a2h2
+

a4b5

(4d2b2 − a2h2)2
(E.13)

β2 = 1 +
h2

2b2
+

a2b2

16d2b2 − 4a2h2
. (E.14)

The distance d̃ between the two foci of the backprojection hyperbola is given by

d̃2 = α2 + β2. (E.15)

The center of the intersection hyperbola can be determined by

xc = − 1

D

∣∣∣∣∣∣∣
Bx Axy

By Ayy

∣∣∣∣∣∣∣ (E.16)

and

yc = − 1

D

∣∣∣∣∣∣∣
Axx Bx

Axy By

∣∣∣∣∣∣∣ . (E.17)

[48]

For our data collection this yields a center of

(xc, yc) =

(
−a2dbh2

4d2b2 − a2h2
, 0

)
. (E.18)

Thus, all other things being equal, as the height of the receiver in motion increases, the center of the

backprojection hyperbola moves farther from the stationary receiver in the ground plane. As we

demonstrated in 8, when this is taken to the extreme the intersection of the hyperboloid of TDOA

and the ground plane becomes an ellipse rather than a hyperbola.

As the center of the backprojection hyperbola moves the foci will move as well. Thus, the

family of backprojections in this case is also somewhat more complicated than that of the two

dimensional case we first investigated. With future work it is hoped that these analytic expressions
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for the families of the backprojections will yield insights that allow for the optimization of flight

paths in producing SASL images.
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