1,662 research outputs found

    Computation Tree Logic with Deadlock Detection

    Get PDF
    We study the equivalence relation on states of labelled transition systems of satisfying the same formulas in Computation Tree Logic without the next state modality (CTL-X). This relation is obtained by De Nicola & Vaandrager by translating labelled transition systems to Kripke structures, while lifting the totality restriction on the latter. They characterised it as divergence sensitive branching bisimulation equivalence. We find that this equivalence fails to be a congruence for interleaving parallel composition. The reason is that the proposed application of CTL-X to non-total Kripke structures lacks the expressiveness to cope with deadlock properties that are important in the context of parallel composition. We propose an extension of CTL-X, or an alternative treatment of non-totality, that fills this hiatus. The equivalence induced by our extension is characterised as branching bisimulation equivalence with explicit divergence, which is, moreover, shown to be the coarsest congruence contained in divergence sensitive branching bisimulation equivalence

    Split-2 Bisimilarity has a Finite Axiomatization over CCS with<br> Hennessy&#39;s Merge

    Get PDF
    This note shows that split-2 bisimulation equivalence (also known as timed equivalence) affords a finite equational axiomatization over the process algebra obtained by adding an auxiliary operation proposed by Hennessy in 1981 to the recursion, relabelling and restriction free fragment of Milner's Calculus of Communicating Systems. Thus the addition of a single binary operation, viz. Hennessy's merge, is sufficient for the finite equational axiomatization of parallel composition modulo this non-interleaving equivalence. This result is in sharp contrast to a theorem previously obtained by the same authors to the effect that the same language is not finitely based modulo bisimulation equivalence
    corecore