3,405 research outputs found

    Bipartite induced density in triangle-free graphs

    Full text link
    We prove that any triangle-free graph on nn vertices with minimum degree at least dd contains a bipartite induced subgraph of minimum degree at least d2/(2n)d^2/(2n). This is sharp up to a logarithmic factor in nn. Relatedly, we show that the fractional chromatic number of any such triangle-free graph is at most the minimum of n/dn/d and (2+o(1))n/logn(2+o(1))\sqrt{n/\log n} as nn\to\infty. This is sharp up to constant factors. Similarly, we show that the list chromatic number of any such triangle-free graph is at most O(min{n,(nlogn)/d})O(\min\{\sqrt{n},(n\log n)/d\}) as nn\to\infty. Relatedly, we also make two conjectures. First, any triangle-free graph on nn vertices has fractional chromatic number at most (2+o(1))n/logn(\sqrt{2}+o(1))\sqrt{n/\log n} as nn\to\infty. Second, any triangle-free graph on nn vertices has list chromatic number at most O(n/logn)O(\sqrt{n/\log n}) as nn\to\infty.Comment: 20 pages; in v2 added note of concurrent work and one reference; in v3 added more notes of ensuing work and a result towards one of the conjectures (for list colouring

    A sharp threshold for random graphs with a monochromatic triangle in every edge coloring

    Full text link
    Let R\R be the set of all finite graphs GG with the Ramsey property that every coloring of the edges of GG by two colors yields a monochromatic triangle. In this paper we establish a sharp threshold for random graphs with this property. Let G(n,p)G(n,p) be the random graph on nn vertices with edge probability pp. We prove that there exists a function c^=c^(n)\hat c=\hat c(n) with 000 0, as nn tends to infinity Pr[G(n,(1-\eps)\hat c/\sqrt{n}) \in \R ] \to 0 and Pr [ G(n,(1+\eps)\hat c/\sqrt{n}) \in \R ] \to 1. A crucial tool that is used in the proof and is of independent interest is a generalization of Szemer\'edi's Regularity Lemma to a certain hypergraph setting.Comment: 101 pages, Final version - to appear in Memoirs of the A.M.

    Extremal results in sparse pseudorandom graphs

    Get PDF
    Szemer\'edi's regularity lemma is a fundamental tool in extremal combinatorics. However, the original version is only helpful in studying dense graphs. In the 1990s, Kohayakawa and R\"odl proved an analogue of Szemer\'edi's regularity lemma for sparse graphs as part of a general program toward extending extremal results to sparse graphs. Many of the key applications of Szemer\'edi's regularity lemma use an associated counting lemma. In order to prove extensions of these results which also apply to sparse graphs, it remained a well-known open problem to prove a counting lemma in sparse graphs. The main advance of this paper lies in a new counting lemma, proved following the functional approach of Gowers, which complements the sparse regularity lemma of Kohayakawa and R\"odl, allowing us to count small graphs in regular subgraphs of a sufficiently pseudorandom graph. We use this to prove sparse extensions of several well-known combinatorial theorems, including the removal lemmas for graphs and groups, the Erd\H{o}s-Stone-Simonovits theorem and Ramsey's theorem. These results extend and improve upon a substantial body of previous work.Comment: 70 pages, accepted for publication in Adv. Mat
    corecore