3 research outputs found

    Assessment of smoke contamination in grapevine berries and taint in wines due to bushfires using a low-cost E-nose and an artificial intelligence approach

    Get PDF
    Bushfires are increasing in number and intensity due to climate change. A newly developed low-cost electronic nose (e-nose) was tested on wines made from grapevines exposed to smoke in field trials. E-nose readings were obtained from wines from five experimental treatments: (i) low-density smoke exposure (LS), (ii) high-density smoke exposure (HS), (iii) high-density smoke exposure with in-canopy misting (HSM), and two controls: (iv) control (C; no smoke treatment) and (v) control with in-canopy misting (CM; no smoke treatment). These e-nose readings were used as inputs for machine learning algorithms to obtain a classification model, with treatments as targets and seven neurons, with 97% accuracy in the classification of 300 samples into treatments as targets (Model 1). Models 2 to 4 used 10 neurons, with 20 glycoconjugates and 10 volatile phenols as targets, measured: in berries one hour after smoke (Model 2; R = 0.98; R2 = 0.95; b = 0.97); in berries at harvest (Model 3; R = 0.99; R2 = 0.97; b = 0.96); in wines (Model 4; R = 0.99; R2 = 0.98; b = 0.98). Model 5 was based on the intensity of 12 wine descriptors determined via a consumer sensory test (Model 5; R = 0.98; R2 = 0.96; b = 0.97). These models could be used by winemakers to assess near real-time smoke contamination levels and to implement amelioration strategies to minimize smoke taint in wines following bushfires.Sigfredo Fuentes, Vasiliki Summerson, Claudia Gonzalez Viejo, Eden Tongson, Nir Lipovetzky, Kerry L. Wilkinson ... et al

    Bionic Electronic Nose Based on MOS Sensors Array and Machine Learning Algorithms Used for Wine Properties Detection

    No full text
    In this study, a portable electronic nose (E-nose) prototype is developed using metal oxide semiconductor (MOS) sensors to detect odors of different wines. Odor detection facilitates the distinction of wines with different properties, including areas of production, vintage years, fermentation processes, and varietals. Four popular machine learning algorithms—extreme gradient boosting (XGBoost), random forest (RF), support vector machine (SVM), and backpropagation neural network (BPNN)—were used to build identification models for different classification tasks. Experimental results show that BPNN achieved the best performance, with accuracies of 94% and 92.5% in identifying production areas and varietals, respectively; and SVM achieved the best performance in identifying vintages and fermentation processes, with accuracies of 67.3% and 60.5%, respectively. Results demonstrate the effectiveness of the developed E-nose, which could be used to distinguish different wines based on their properties following selection of an optimal algorithm

    Smart Gas Sensors: Materials, Technologies, Practical ‎Applications, and Use of Machine Learning – A Review

    Get PDF
    The electronic nose, popularly known as the E-nose, that combines gas sensor arrays (GSAs) with machine learning has gained a strong foothold in gas sensing technology. The E-nose designed to mimic the human olfactory system, is used for the detection and identification of various volatile compounds. The GSAs develop a unique signal fingerprint for each volatile compound to enable pattern recognition using machine learning algorithms. The inexpensive, portable and non-invasive characteristics of the E-nose system have rendered it indispensable within the gas-sensing arena. As a result, E-noses have been widely employed in several applications in the areas of the food industry, health management, disease diagnosis, water and air quality control, and toxic gas leakage detection. This paper reviews the various sensor fabrication technologies of GSAs and highlights the main operational framework of the E-nose system. The paper details vital signal pre-processing techniques of feature extraction, feature selection, in addition to machine learning algorithms such as SVM, kNN, ANN, and Random Forests for determining the type of gas and estimating its concentration in a competitive environment. The paper further explores the potential applications of E-noses for diagnosing diseases, monitoring air quality, assessing the quality of food samples and estimating concentrations of volatile organic compounds (VOCs) in air and in food samples. The review concludes with some challenges faced by E-nose, alternative ways to tackle them and proposes some recommendations as potential future work for further development and design enhancement of E-noses
    corecore