106,789 research outputs found
Investigating the impact of combining handwritten signature and keyboard keystroke dynamics for gender prediction
© 2019 IEEE. The use of soft-biometric data as an auxiliary tool on user identification is already well known. Gender, handorientation and emotional state are some examples which can be called soft-biometrics. These soft-biometric data can be predicted directly from the biometric templates. It is very common to find researches using physiological modalities for soft-biometric prediction, but behavioural biometric is often not well explored for this context. Among the behavioural biometric modalities, keystroke dynamics and handwriting signature have been widely explored for user identification, including some soft-biometric predictions. However, in these modalities, the soft-biometric prediction is usually done in an individual way. In order to fill this space, this study aims to investigate whether the combination of those two biometric modalities can impact the performance of a soft-biometric data, gender prediction. The main aim is to assess the impact of combining data from two different biometric sources in gender prediction. Our findings indicated gains in terms of performance for gender prediction when combining these two biometric modalities, when compared to the individual ones
Privacy-Aware Processing of Biometric Templates by Means of Secure Two-Party Computation
The use of biometric data for person identification and access control is gaining more and more popularity. Handling biometric data, however, requires particular care, since biometric data is indissolubly tied to the identity of the owner hence raising important security and privacy issues. This chapter focuses on the latter, presenting an innovative approach that, by relying on tools borrowed from Secure Two Party Computation (STPC) theory, permits to process the biometric data in encrypted form, thus eliminating any risk that private biometric information is leaked during an identification process. The basic concepts behind STPC are reviewed together with the basic cryptographic primitives needed to achieve privacy-aware processing of biometric data in a STPC context. The two main approaches proposed so far, namely homomorphic encryption and garbled circuits, are discussed and the way such techniques can be used to develop a full biometric matching protocol described. Some general guidelines to be used in the design of a privacy-aware biometric system are given, so as to allow the reader to choose the most appropriate tools depending on the application at hand
Face Off: An Examination of State Biometric Privacy Statutes & Data Harm Remedies
As biometric authentication becomes an increasingly popular method of security among consumers, only three states currently have statutes detailing how such data may be collected, used, retained, and released. The Illinois Biometric Information Privacy Act is the only statute of the three that enshrines a private right of action for those who fail to properly handle biometric data. Both the Texas Capture or Use Biometric Identifier Act Information Act and the Washington Biometric Privacy Act allow for state Attorneys General to bring suit on behalf of aggrieved consumers. This Note examines these three statutes in the context of data security and potential remedies for victims of data breaches or mishandled data. Ultimately, this Note makes policy proposals for future biometric privacy statutes, particularly recommending a private right of action as the most effective remedy for victims of biometric data breaches
Homomorphic Encryption for Speaker Recognition: Protection of Biometric Templates and Vendor Model Parameters
Data privacy is crucial when dealing with biometric data. Accounting for the
latest European data privacy regulation and payment service directive,
biometric template protection is essential for any commercial application.
Ensuring unlinkability across biometric service operators, irreversibility of
leaked encrypted templates, and renewability of e.g., voice models following
the i-vector paradigm, biometric voice-based systems are prepared for the
latest EU data privacy legislation. Employing Paillier cryptosystems, Euclidean
and cosine comparators are known to ensure data privacy demands, without loss
of discrimination nor calibration performance. Bridging gaps from template
protection to speaker recognition, two architectures are proposed for the
two-covariance comparator, serving as a generative model in this study. The
first architecture preserves privacy of biometric data capture subjects. In the
second architecture, model parameters of the comparator are encrypted as well,
such that biometric service providers can supply the same comparison modules
employing different key pairs to multiple biometric service operators. An
experimental proof-of-concept and complexity analysis is carried out on the
data from the 2013-2014 NIST i-vector machine learning challenge
Hybrid Template Update System for Unimodal Biometric Systems
Semi-supervised template update systems allow to automatically take into
account the intra-class variability of the biometric data over time. Such
systems can be inefficient by including too many impostor's samples or skipping
too many genuine's samples. In the first case, the biometric reference drifts
from the real biometric data and attracts more often impostors. In the second
case, the biometric reference does not evolve quickly enough and also
progressively drifts from the real biometric data. We propose a hybrid system
using several biometric sub-references in order to increase per- formance of
self-update systems by reducing the previously cited errors. The proposition is
validated for a keystroke- dynamics authentication system (this modality
suffers of high variability over time) on two consequent datasets from the
state of the art.Comment: IEEE International Conference on Biometrics: Theory, Applications and
Systems (BTAS 2012), Washington, District of Columbia, USA : France (2012
Binary Biometrics: An Analytic Framework to Estimate the Performance Curves Under Gaussian Assumption
In recent years, the protection of biometric data has gained increased interest from the scientific community. Methods such as the fuzzy commitment scheme, helper-data system, fuzzy extractors, fuzzy vault, and cancelable biometrics have been proposed for protecting biometric data. Most of these methods use cryptographic primitives or error-correcting codes (ECCs) and use a binary representation of the real-valued biometric data. Hence, the difference between two biometric samples is given by the Hamming distance (HD) or bit errors between the binary vectors obtained from the enrollment and verification phases, respectively. If the HD is smaller (larger) than the decision threshold, then the subject is accepted (rejected) as genuine. Because of the use of ECCs, this decision threshold is limited to the maximum error-correcting capacity of the code, consequently limiting the false rejection rate (FRR) and false acceptance rate tradeoff. A method to improve the FRR consists of using multiple biometric samples in either the enrollment or verification phase. The noise is suppressed, hence reducing the number of bit errors and decreasing the HD. In practice, the number of samples is empirically chosen without fully considering its fundamental impact. In this paper, we present a Gaussian analytical framework for estimating the performance of a binary biometric system given the number of samples being used in the enrollment and the verification phase. The error-detection tradeoff curve that combines the false acceptance and false rejection rates is estimated to assess the system performance. The analytic expressions are validated using the Face Recognition Grand Challenge v2 and Fingerprint Verification Competition 2000 biometric databases
- …
