133,656 research outputs found
Recommended from our members
The Use of Poly(vinyl alcohol)-based Hydrogels in Biomedical Applications
Polymers have found increasing favor in biomedical applications due to the greater
control that researchers can exert over their properties. Researchers have focused on the
development of therapies using biologically compatible polymers due to their ability to
limit potentially harmful interactions with the body. This research has led to advances in
tissue engineering, controlled and targeted drug delivery, and other biomedical fields, with
the goal of improving both the effectiveness and accessibility of health care.
Poly(vinyl alcohol) (PVA) hydrogels possess several chemical properties that make them
well suited for biomedical applications. These include inertness and stability,
biocompatibility, and pH-responsiveness. As a result, PVA based materials have been
studied for potential applications in areas of biomedicine such as targeted drug delivery,
tissue engineering, and wound healing.
This thesis examines the properties of PVA and seeks to understand how the chemical
and physical structure affects their properties. It then examines how these properties
enhance their utility in potential biomedical applications. Finally, it reviews the research
into development of PVA based materials for three different biomedical applications.Chemical Engineerin
Recommended from our members
Enzymatically-triggered, isothermally responsive polymers: re-programming poly(oligoethylene glycols) to respond to phosphatase
Polymers which can respond to externally applied stimuli have found much application in the biomedical field due to their (reversible) coil–globule transitions. Polymers displaying a lower critical solution temperature are the most commonly used, but for blood-borne (i.e., soluble) biomedical applications the application of heat is not always possible, nor practical. Here we report the design and synthesis of poly(oligoethylene glycol methacrylate)-based polymers whose cloud points are easily varied by alkaline phosphatase-mediated dephosphorylation. By fine-tuning the density of phosphate groups on the backbone, it was possible to induce an isothermal transition: A change in solubility triggered by removal of a small number of phosphate esters from the side chains activating the LCST-type response. As there was no temperature change involved, this serves as a model of a cell-instructed polymer response. Finally, it was found that both polymers were non cytotoxic against MCF-7 cells (at 1 mg·mL–1), which confirms promise for biomedical applications
Investigations on vinylene carbonate, 2. Copolymerization with N-vinyl-2-pyrrolidone and ethyl vinyl ether
Functional monomers and polymers have received considerable attention in recent years, especially in the biomedical field. In this respect, poly(viny1ene carbonate) is very interesting, because the reactive carbonate groups offer the possibility of coupling with bioactive compounds containing amino groups, e. g. proteins or enzymes. Copolymerization of vinylene carbonate with other vinyl monomers will affect the amount of carbonate groups as well as other properties of the copolymers. In a previous paper we described the preparation and properties of poly(viny1ene carbonate) I), and this paper reports the copolymerization of vinylene carbonate with N-vinyl-2-pyrrolidone and with ethyl vinyl ether
Poly(2-oxazolines) in biological and biomedical application contexts.
Polyoxazolines of various architectures and chemical functionalities can be prepared in a living and therefore controlled manner via cationic ring-opening polymerisation. They have found widespread applications, ranging from coatings to pigment dispersants. Furthermore, several polyoxazolines are water-soluble or amphiphilic and relatively non-toxic, which makes them interesting as biomaterials. This paper reviews the development of polyoxazoline-based polymers in biological and biomedical application contexts since the beginning of the millennium. This includes nanoscalar systems such as membranes and nanoparticles, drug and gene delivery applications, as well as stimuli-responsive systems
Superparamagnetic Poly (3-hydroxybutyrate-co-3 hydroxyvalerate) (PHBV) nanoparticles for biomedical applications
Indexación: ScieloBackground: The progress in material science and the recent advances in biodegradable/biocompatible polymers and magnetic iron oxide nanoparticles have led to develop innovative diagnostic and therapeutic strategies for diseases based on multifunctional nanoparticles, which include contrast medium for magnetic resonance imaging, agent for hyperthermia and nanocarriers for targeted drug delivery. The aim of this work is to synthesize and characterize superparamagnetic iron oxide (magnetite), and to encapsulate them into poly (3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) nanoparticles for biomedical applications.
Results: The magnetite nanoparticles were confirmed by X-ray diffraction and exhibited a size of 22.3 ± 8.8 nm measured by transmission electron microscopy (TEM). Polymeric PHBV nanoparticles loaded with magnetite (MgNPs) were analyzed using dynamic light scattering and showed a size of 258.6 ± 35.7 nm and a negative zeta potential (-10.8 ± 3.5 mV). The TEM examination of MgNPs exhibited a spherical core-shell structure and the magnetic measurements showed in both, non-encapsulated magnetite and MgNPs, a superparamagnetic performance. Finally, the in vitro studies about the magnetic retention of MgNPs in a segment of small intestine of rats showed an active accumulation in the region of the magnetic field.
Conclusions: The results obtained make the MgNPs suitable as potential magnetic resonance imaging contrast agents, also promoting hyperthermia and even as potential nanocarriers for site-specific transport and delivery of drugs.
Keywords: hyperthermia, magnetic resonance image (MRI), magnetite, PHBV, polymeric nanoparticles.http://ref.scielo.org/cxt57
Stimuli-responsive electrospun fibers and their applications
Stimuli-responsive electrospun nanofibers are gaining considerable attention as highly versatile tools which offer great potential in the biomedical field. In this critical review, an overview is given on recent advances made in the development and application of stimuli-responsive fibers. The specific features of these electrospun fibers are highlighted and discussed in view of the properties required for the diverse applications. Furthermore, several novel biomedical applications are discussed and the respective advantages and shortcomings inherent to stimuli-responsive electrospun fibers are addressed (136 references)
Thrifty swimming with shear-thinning
Microscale propulsion is integral to numerous biomedical systems, for example
biofilm formation and human reproduction, where the surrounding fluids comprise
suspensions of polymers. These polymers endow the fluid with non-Newtonian
rheological properties, such as shear-thinning and viscoelasticity. Thus, the
complex dynamics of non-Newtonian fluids presents numerous modelling
challenges, strongly motivating experimental study. Here, we demonstrate that
failing to account for "out-of-plane" effects when analysing experimental data
of undulatory swimming through a shear-thinning fluid results in a significant
overestimate of fluid viscosity around the model swimmer C. elegans. This
miscalculation of viscosity corresponds with an overestimate of the power the
swimmer expends, a key biophysical quantity important for understanding the
internal mechanics of the swimmer. As experimental flow tracking techniques
improve, accurate experimental estimates of power consumption using this
technique will arise in similar undulatory systems, such as the planar beating
of human sperm through cervical mucus, will be required to probe the
interaction between internal power generation, fluid rheology, and the
resulting waveform
Effect of hydroxyapatite nanoparticles on the degradability of random poly(butylene terephthalate-co-aliphatic dicarboxylate)s having a high content of terephthalic units
Copolyesters derived from 1,4-butanediol and constituted also of aliphatic and aromatic dicarboxylate units in a molar ratio of 3:7 were synthesized by a two-step polycondensation procedure. Succinic, adipic, and sebacic acids were specifically selected as the aliphatic component whereas terephthalic acid was chosen as the aromatic moiety. The second synthesis step was a thermal transesterification between the corresponding homopolymers, always attaining a random distribution as verified by NMR spectroscopy. Hybrid polymer composites containing 2.5 wt % of hydroxyapatite (HAp) were also prepared by in situ polymerization. Hydroxyl groups on the nanoparticle surface allowed the grafting of polymer chains in such a way that composites were mostly insoluble in the typical solvents of the parent copolyesters. HAp had some influence on crystallization from the melt, thermal stability, and mechanical properties. HAp also improved the biocompatibility of samples due to the presence of Ca2+ cations and the damping effect of phosphate groups. Interestingly, HAp resulted in a significant increase in the hydrophilicity of samples, which considerably affected both enzymatic and hydrolytic degradability. Slight differences were also found in the function of the dicarboxylic component, as the lowest degradation rates was found for the sample constituted of the most hydrophobic sebacic acid units. View Full-TextPeer ReviewedPostprint (published version
A novel multifunctional biomedical material based on polyacrylonitrile:preparation and characterization
Wet spun microfibers have great potential in the design of multifunctional controlled release materials. Curcumin (Cur) and vitamin E acetate (Vit. E Ac) were used as a model drug system to evaluate the potential application of the drug-loaded microfiber system for enhanced delivery. The drugs and polyacrylonitrile (PAN) were blended together and spun to produce the target drug-loaded microfiber using an improved wet-spinning method and then the microfibers were successfully woven into fabrics. Morphological, mechanical properties, thermal behavior, drug release performance characteristics, and cytocompatibility were determined. The drug-loaded microfiber had a lobed “kidney” shape with a height of 50 ~ 100 μm and width of 100 ~ 200 μm. The addition of Cur and Vit. E Ac had a great influence on the surface and cross section structure of the microfiber, leading to a rough surface having microvoids. X-ray diffraction and Fourier transform infrared spectroscopy indicated that the drugs were successfully encapsulated and dispersed evenly in the microfilament fiber. After drug loading, the mechanical performance of the microfilament changed, with the breaking strength improved slightly, but the tensile elongation increased significantly. Thermogravimetric results showed that the drug load had no apparent adverse effect on the thermal properties of the microfibers. However, drug release from the fiber, as determined through in-vitro experiments, is relatively low and this property is maintained over time. Furthermore, in-vitro cytocompatibility testing showed that no cytotoxicty on the L929 cells was found up to 5% and 10% respectively of the theoretical drug loading content (TDLC) of curcumin and vitamin E acetate. This study provides reference data to aid the development of multifunctional textiles and to explore their use in the biomedical material field
- …
