923 research outputs found

    Evaluating Feature Extraction Methods for Biomedical Word Sense Disambiguation

    Get PDF
    Evaluating Feature Extraction Methods for Biomedical WSD Clint Cuffy, Sam Henry and Bridget McInnes, PhD Virginia Commonwealth University, Richmond, Virginia, USA Introduction. Biomedical text processing is currently a high active research area but ambiguity is still a barrier to the processing and understanding of these documents. Many word sense disambiguation (WSD) approaches represent instances of an ambiguous word as a distributional context vector. One problem with using these vectors is noise -- information that is overly general and does not contribute to the word’s representation. Feature extraction approaches attempt to compensate for sparsity and reduce noise by transforming the data from high-dimensional space to a space of fewer dimensions. Currently, word embeddings [1] have become an increasingly popular method to reduce the dimensionality of vector representations. In this work, we evaluate word embeddings in a knowledge-based word sense disambiguation method. Methods. Context requiring disambiguation consists of an instance of an ambiguous word, and multiple denotative senses. In our method, each word is replaced with its respective word embedding and either summed or averaged to form a single instance vector representation. This also is performed for each sense of an ambiguous word using the sense’s definition obtained from the Unified Medical Language System (UMLS). We calculate the cosine similarity between each sense and instance vectors, and assign the instance the sense with the highest value. Evaluation. We evaluate our method on three biomedical WSD datasets: NLM-WSD, MSH-WSD and Abbrev. The word embeddings were trained on the titles and abstracts from the 2016 Medline baseline. We compare using two word embedding models, Skip-gram and Continuous Bag of Words (CBOW), and vary the word vector representational lengths, from one-hundred to one-thousand, and compare differences in accuracy. Results. The overall outcome of this method demonstrates fairly high accuracy at disambiguating biomedical instance context from groups of denotative senses. The results showed the Skip-gram model obtained a higher disambiguation accuracy than CBOW but the increase was not significant for all of the datasets. Similarly, vector representations of differing lengths displayed minimal change in results, often differing by mere tenths in percentage. We also compared our results to current state-of-the-art knowledge-based WSD systems, including those that have used word embeddings, showing comparable or higher disambiguation accuracy. Conclusion. Although biomedical literature can be ambiguous, our knowledge-based feature extraction method using word embeddings demonstrates a high accuracy in disambiguating biomedical text while eliminating variations of associated noise. In the future, we plan to explore additional dimensionality reduction methods and training data. [1] T. Mikolov, I. Sutskever, K. Chen, G. Corrado and J. Dean, Distributed representations of words and phrases and their compositionality, Advances in neural information processing systems, pp. 3111-3119, 2013.https://scholarscompass.vcu.edu/uresposters/1278/thumbnail.jp

    Biomedical word sense disambiguation with word embeddings

    Get PDF
    There is a growing need for automatic extraction of information and knowledge from the increasing amount of biomedical and clinical data produced, namely in textual form. Natural language processing comes in this direction, helping in tasks such as information extraction and information retrieval. Word sense disambiguation is an important part of this process, being responsible for assigning the proper concept to an ambiguous term. In this paper, we present results from machine learning and knowledge-based algorithms applied to biomedical word sense disambiguation. For the supervised machine learning algorithms we used word embeddings, calculated from the full MEDLINE literature database, as global features and compare the results to the use of local unigram and bigram features. For the knowledge-based method we represented the textual definitions of biomedical concepts from the UMLS database as word embedding vectors, and combined this with concept associations derived from the MeSH term co-occurrences. Both the machine learning and the knowledge-based results indicate that word embeddings are informative and improve the biomedical word disambiguation accuracy. Applied to the reference MSH WSD data set, our knowledge-based approach achieves 85.1% disambiguation accuracy, which is higher than some previously proposed approaches that do not use machine-learning strategies.publishe

    BIOMEDICAL WORD SENSE DISAMBIGUATION WITH NEURAL WORD AND CONCEPT EMBEDDINGS

    Get PDF
    Addressing ambiguity issues is an important step in natural language processing (NLP) pipelines designed for information extraction and knowledge discovery. This problem is also common in biomedicine where NLP applications have become indispensable to exploit latent information from biomedical literature and clinical narratives from electronic medical records. In this thesis, we propose an ensemble model that employs recent advances in neural word embeddings along with knowledge based approaches to build a biomedical word sense disambiguation (WSD) system. Specifically, our system identities the correct sense from a given set of candidates for each ambiguous word when presented in its context (surrounding words). We use the MSH WSD dataset, a well known public dataset consisting of 203 ambiguous terms each with nearly 200 different instances and an average of two candidate senses represented by concepts in the unified medical language system (UMLS). We employ a popular biomedical concept, Our linear time (in terms of number of senses and context length) unsupervised and knowledge based approach improves over the state-of-the-art methods by over 3% in accuracy. A more expensive approach based on the k-nearest neighbor framework improves over prior best results by 5% in accuracy. Our results demonstrate that recent advances in neural dense word vector representations offer excellent potential for solving biomedical WSD

    Using Distributed Representations to Disambiguate Biomedical and Clinical Concepts

    Full text link
    In this paper, we report a knowledge-based method for Word Sense Disambiguation in the domains of biomedical and clinical text. We combine word representations created on large corpora with a small number of definitions from the UMLS to create concept representations, which we then compare to representations of the context of ambiguous terms. Using no relational information, we obtain comparable performance to previous approaches on the MSH-WSD dataset, which is a well-known dataset in the biomedical domain. Additionally, our method is fast and easy to set up and extend to other domains. Supplementary materials, including source code, can be found at https: //github.com/clips/yarnComment: 6 pages, 1 figure, presented at the 15th Workshop on Biomedical Natural Language Processing, Berlin 201

    ShotgunWSD: An unsupervised algorithm for global word sense disambiguation inspired by DNA sequencing

    Full text link
    In this paper, we present a novel unsupervised algorithm for word sense disambiguation (WSD) at the document level. Our algorithm is inspired by a widely-used approach in the field of genetics for whole genome sequencing, known as the Shotgun sequencing technique. The proposed WSD algorithm is based on three main steps. First, a brute-force WSD algorithm is applied to short context windows (up to 10 words) selected from the document in order to generate a short list of likely sense configurations for each window. In the second step, these local sense configurations are assembled into longer composite configurations based on suffix and prefix matching. The resulted configurations are ranked by their length, and the sense of each word is chosen based on a voting scheme that considers only the top k configurations in which the word appears. We compare our algorithm with other state-of-the-art unsupervised WSD algorithms and demonstrate better performance, sometimes by a very large margin. We also show that our algorithm can yield better performance than the Most Common Sense (MCS) baseline on one data set. Moreover, our algorithm has a very small number of parameters, is robust to parameter tuning, and, unlike other bio-inspired methods, it gives a deterministic solution (it does not involve random choices).Comment: In Proceedings of EACL 201
    • …
    corecore