7,311 research outputs found

    An optimization model for multi-biomass tri-generation energy supply

    Get PDF
    In this paper, a decision support system (DSS) for multi-biomass energy conversion applications is presented. The system in question aims at supporting an investor by thoroughly assessing an investment in locally existing multi-biomass exploitation for tri-generation applications (electricity, heating and cooling), in a given area. The approach followed combines use of holistic modelling of the system, including the multi-biomass supply chain, the energy conversion facility and the district heating and cooling network, with optimization of the major investment-related variables to maximize the financial yield of the investment. The consideration of multi-biomass supply chain presents significant potential for cost reduction, by allowing spreading of capital costs and reducing warehousing requirements, especially when seasonal biomass types are concerned. The investment variables concern the location of the bioenergy exploitation facility and its sizing, as well as the types of biomass to be procured, the respective quantities and the maximum collection distance for each type. A hybrid optimization method is employed to overcome the inherent limitations of every single method. The system is demand-driven, meaning that its primary aim is to fully satisfy the energy demand of the customers. Therefore, the model is a practical tool in the hands of an investor to assess and optimize in financial terms an investment aiming at covering real energy demand. optimization is performed taking into account various technical, regulatory, social and logical constraints. The model characteristics and advantages are highlighted through a case study applied to a municipality of Thessaly, Greece. (C) 2008 Elsevier Ltd. All rights reserved

    Optimization models for biorefinery supply chain network design under uncertainty

    Get PDF
    Biofuel industry has attracted much attention due to its potential to reduce dependency on fossil fuels and contribute to the renewable energy. The high levels of uncertainty in feedstock yield, market prices, production costs, and many other parameters are among the major challenges in this industry. This challenge has created an ongoing interest on studies considering different aspects of uncertainty in investment decisions of the biofuel industry. This study aims to determine the optimal design of supply chain for biofuel refineries in order to maximize annual profit considering uncertainties in fuel market price, feedstock yield, and logistic costs. In order to deal with the stochastic nature of parameters in the biofuel supply chain, we develop two-stage stochastic programming models in which Conditional Value at Risk (CVaR) is utilized as a risk measure to control the amount of shortage in demand zones. Two different approaches including the expected value and CVaR of the profit are considered as the objective function. We apply these models and compare the results for a case study of the biomass supply chain network in the state of Iowa to demonstrate the applicability and efficiency of the presented models

    Comparative techno-economic analysis of ORC and gasification for bioenergy applications

    Get PDF
    The use of biomass for decentralized energy production has undergone a significant development the last years. The fact that this fuel is CO(2)-free provides many advantages in European and world aims for sustainable energy sources. Biomass trigeneration is a relatively new concept, which has the potential to improve the bioenergy economics for areas with warm climate, for which traditional biomass cogeneration was unfeasible. This concept can be applied with various energy conversion technologies, two of which are investigated in this paper: ORC and gasification. Both technologies are applied for a specific case study. The technological and financial comparison of the two technologies shows that gasification offers improved yield for the investment, mainly due to the higher electrical efficiency factor. However, attention should be placed to the increased investment risk of gasification projects, which could be an aversive factor for some investors. (C) 2008 Elsevier Ltd. All rights reserved

    Improved resource efficiency and cascading utilisation of renewable materials

    Get PDF
    In light of various environmental problems and challenges concerning resource allocation, the utilisation of renewable resources is increasingly important for the efficient use of raw materials. Therefore, cascading utilisation (i.e., the multiple material utilisations of renewable resources prior to their conversion into energy) and approaches that aim to further increase resource efficiency (e.g., the utilisation of by-products) can be considered guiding principles. This paper therefore introduces the Special Volume “Improved Resource Efficiency and Cascading Utilisation of Renewable Materials”. Because both research aspects, resource efficiency and cascading utilisation, belong to several disciplines, the Special Volume adopts an interdisciplinary perspective and presents 16 articles, which can be divided into four subjects: Innovative Materials based on Renewable Resources and their Impact on Sustainability and Resource Efficiency, Quantitative Models for the Integrated Optimisation of Production and Distribution in Networks for Renewable Resources, Information Technology-based Collaboration in Value Generating Networks for Renewable Resources, and Consumer Behaviour towards Eco-friendly Products. The interdisciplinary perspective allows a comprehensive overview of current research on resource efficiency, which is supplemented with 15 book reviews showing the extent to which textbooks of selected disciplines already refer to resource efficiency. This introductory article highlights the relevance of the four subjects, presents summaries of all papers, and discusses future research directions. The overall contribution of the Special Volume is that it bridges the resource efficiency research of selected disciplines and that it presents several approaches for more environmentally sound production and consumption

    Optimization Models for Biorefinery Supply Chain Network Design under Uncertainty

    Get PDF
    Biofuels are attracting increasing attention worldwide due to its environmental and economic benefits. The high levels of uncertainty in feedstock yield, market prices, production costs, and many other parameters are among the major challenges in this industry. This challenge has created an ongoing interest on studies considering different aspects of uncertainty in investment decisions of the biofuel industry. The Renewable Fuel Standard (RFS) sets policies and mandates to support the production and consumption of biofuels. However, the uncertainty associated with these policies and regulations of biofuel production and consumption have significant impacts on the biofuel supply chain network. The goal of this research is first to determine the optimal design of supply chain for biofuel refineries in order to maximize the annual profit considering uncertainties in fuel market price, feedstock yield and logistic costs. In order to deal with the stochastic nature of the parameters in the biofuel supply chain, we develop two-stage stochastic programming models in which Conditional Value at Risk (CVaR) is utilized as a risk measure to control the amount of shortage in demand zones. Two different approaches including the expected value and CVaR of the profit are considered as the objective function. This study also aims to investigate the impacts of the governmental policies and mandates on the total profit in the biofuel supply chain design problem. To achieve this goal, the two-stage stochastic programming models are developed in which conditional value at risk is considered as a risk measure to control the shortage of mandate. We apply these models for a case study of the biomass supply chain network in the state of Iowa to demonstrate the applicability and efficiency of the presented models, and assess the results

    Optimization of Large-Scale Sustainable Renewable Energy Supply Chains in a Stochastic Environment

    Get PDF
    Due to the increasing demand of energy and environmental concern of fossil fuels, it is becoming increasingly important to find alternative renewable energy sources. Biofuels produced from lignocellulosic biomass feedstock's show enormous potential as a renewable resource. Electricity generated from the combustion of biomass is also one important type of bioenergy. Renewable resources like wind also show great potential as a resource for electricity generation. In order to deliver competitive renewable energy products to the end-market, robust renewable energy supply chains (RESCs) are essential. Research is needed in two distinct types of RESCs, namely: 1) lignocellulosic biomass-to-biofuel (LBSC); and 2) wind energy/biomass-to-electricity (WBBRESSC). LBSC is a complex system which consists of multiple uncertainties which include: 1) purchase price and availability of biomass feedstock; 2) sale price and demand of biofuels. To ensure LBSC sustainability, the following decisions need to be optimized: a) allocation of land for biomass cultivation; b) biorefinery sites selection; c) choice of biomass-to-biofuel conversion technology; and d) production capacity of biorefineries. The major uncertainty in a WBBRESC concerns wind speeds which impact the power output of wind farms. To ensure WBBRESC sustainability, the following decisions need to be optimized: a) site selection for installation of wind farms, biomass power plants (BMPPs), and grid stations; b) generation capacity of wind farms and BMPPs; and c) transmission capacity of power lines. The multiple uncertainties in RESCs if not jointly considered in the decision making process result in non-optimal (or even infeasible) solutions which generate lower profits, increased environmental pollution, and reduced social benefits. This research proposes a number of comprehensive mathematical models for the stochastic optimization of RESCs. The proposed large-scale stochastic mixed integer linear programming (SMILP) models are solved to optimality by using suitable decomposition methods (e.g. Bender's) and appropriate metaheuristic algorithms (e.g. Sample Average Approximation). Overall, the research outcomes will help to design robust RESCs focused towards sustainability in order to optimally utilize the renewable resources in the near future. The findings can be used by renewable energy producers to sustainably operate in an efficient (and cost effective) manner, boost the regional economy, and protect the environment

    Process modeling and supply chain design for advanced biofuel production based on bio-oil gasification

    Get PDF
    As a potential substitute for petroleum-based fuel, second generation biofuels are playing an increasingly important role due to their economic, environmental, and social benefits. With the rapid development of biofuel industry, there has been an increasing literature on the techno-economic analysis and supply chain design for biofuel production based on a variety of production pathways. A recently proposed production pathway of advanced biofuel is to convert biomass to bio-oil at widely distributed small-scale fast pyrolysis plants, then gasify the bio-oil to syngas and upgrade the syngas to transportation fuels in centralized biorefinery. This thesis aims to investigate two types of assessments on this bio-oil gasification pathway: techno-economic analysis based on process modeling and literature data; supply chain design with a focus on optimal decisions for number of facilities to build, facility capacities and logistic decisions considering uncertainties. A detailed process modeling with corn stover as feedstock and liquid fuels as the final products is presented. Techno-economic analysis of the bio-oil gasification pathway is also discussed to assess the economic feasibility. Some preliminary results show a capital investment of 438 million dollar and minimum fuel selling price (MSP) of $5.6 per gallon of gasoline equivalent. The sensitivity analysis finds that MSP is most sensitive to internal rate of return (IRR), biomass feedstock cost, and fixed capital cost. A two-stage stochastic programming is formulated to solve the supply chain design problem considering uncertainties in biomass availability, technology advancement, and biofuel price. The first-stage makes the capital investment decisions including the locations and capacities of the decentralized fast pyrolysis plants and the centralized biorefinery while the second-stage determines the biomass and biofuel flows. The numerical results and case study illustrate that considering uncertainties can be pivotal in this supply chain design and optimization problem. Also, farmers\u27 participation has a significant effect on the decision making process

    Diffusion of bioenergy in urban areas: socio-economic analysis of the planned Swiss wood-fired cogeneration plant in Basel

    Get PDF
    The municipal utilities of Basel (IWB) are in the process of building a 30 MW wood-fired CHP plant in the city of Basel, a project idea that was initially propelled by visionaries from the forest sector. The plant is attractive both politically and from a business perspective, as several goals related to the increased use of renewable energy can be achieved simultaneously. Moreover, significant woody biomass resources are awaiting further exploitation in the Basel region, which could help to improve markedly the cost effectiveness of forest maintenance. In this paper we study the history and some of the characteristics of the planned project from a socio-economic perspective. Of particular interest to our study is the early involvement of a large number of stakeholders with different interests. The project constitutes a pioneering project that could serve as an important non-Scandinavian model for similar projects in other parts of Switzerland, but also in Western and Central Europe as a whole. The lengthy decision-making and planning process offers interesting insights into the socio-economic drivers and barriers of large-scale bioenergy projects in urban settings, where wood heating systems are in general not as well established as in the countryside. We find that the interest of regional forest owners to tackle the problem of over-aged and largely unprofitable forests, coupled with a political climate that (1) favours green energy projects and (2) provides incentives for the municipal utility to produce more green energy from sources other than hydropower, have been the two main success factors for developing this particular biomass plant project.Urban biomass use, Wood energy, Cogeneration, Socio-economics, Basel, Switzerland
    corecore