2,672,275 research outputs found

    Differential Expression Of Gap Junction mRNAs And Proteins In The Developing Murine Kidney And In Experimentally Induced Nephric Mesenchymes

    Get PDF
    The expression of three gap junction (GJ) proteins, alpha-1 (Cx43), beta-1 (Cx32), and beta-2 (Cx26), and their transcripts were examined during the ontogeny of the mouse and rat kidney. These proteins were expressed in two non-overlapping patterns. The alpha-1 GJ protein was first observed in mesenchymal cells in the 12-day mouse kidney. By day 14 and thereafter, the ai protein was detected in the transient S-shaped bodies, but not in the podocytes of the maturing glomeruli. After birth the antigen was retained in a small subset of secretory tubules.The beta-1 and beta-2 GJ proteins were similar in their developmental patterns. They were first detected in a small subset of secretory tubules in the subcortical zone of day 17 embryos. These tubules were identified by immunohistochemical markers to be proximal. At birth, practically all proximal tubules expressed the two antigens.This analysis of GJ proteins was consistent with the results of S1 nuclease protection assays showing that, while the alpha-1 mRNA appeared early during kidney development and declined around birth, the two beta mRNAs appeared later and became intensified during the last days of intrauterine development.In experimentally induced metanephric mesenchymes, a transient expression of the alpha-1 GJ protein was seen during the segregation of the tubular anlagen. beta-1 and beta-2 GJ proteins were not detected in such induced mesenchymes cultivated up to 7 days.These observations provide evidence for the cell-specific utilization of different GJ genes during different stages of kidney organogenesis. The alpha-1 gene is activated during the early segregation of the secretory tubule and might contribute to its compartmentalization, while the beta-1 and beta-2 gene products are not detected until advanced stages of development. The latter gene products might be correlated with the physiological activity of the proximal tubules in vivo, as they are not expressed in experimentally induced tubules detectable with markers for proximal tubules

    Multiple Signaling Functions Of Song In A Polymorphic Species With Alternative Reproductive Strategies

    Get PDF
    Vocal traits can be sexually selected to reflect male quality, but may also evolve to serve additional signaling functions. We used a long-term dataset to examine the signaling potential of song in dimorphic white-throated sparrows (Zonotrichia albicollis). We investigated whether song conveys multifaceted information about the vocalizing individual, including fitness, species identity, individual identity, and morph. We also evaluated whether song traits correlate differently with fitness in the two morphs, as the more promiscuous strategy of white, relative to tan, morph males might impose stronger sexual selection. Males with high song rates achieved higher lifetime reproductive success, and this pattern was driven by white morph males. In addition, males that sang songs with many notes survived longer, but this pattern was less robust. Thus, song traits reflect differences in fitness and may more strongly affect fitness in the white morph. Song frequency was unrelated to fitness, body size, or morph, but was individual specific and could signal individual identity. Songs of the two morphs displayed similar frequency ratios and bandwidths. However, tan morph males sang songs with longer first notes, fewer notes, and higher variability. Thus, song could be used in morph discrimination. Variation in frequency ratios between notes was low and could function in conspecific recognition, but pitch change dynamics did differ between four different song types observed. Our results support a multiple messages model for white-throated sparrow song, in which different song traits communicate discrete information about the vocalizing individual

    Review Of Illuminating Life: Selected Papers From Cold Spring Harbor (1903-1969). Volume 1 By J. Witkowski

    Get PDF

    Autumnal Bird Migration Over The Windward Caribbean Islands

    Get PDF

    Neotropical Bird Migration During The Ice Ages: Orientation And Ecology

    Get PDF
    Reconstruction of breeding habitat of North American Neotropical migrants 18,000 years ago and 9,000 years ago indicated major shifts in both location and composition of plant communities relative to present conditions. Increased vegetation in xeric areas may have compensated, at least in part, for the reduction in breeding habitat due to glaciation. Autumnal flights of Neotropical passerine migrants flying on constant headings from North America to Central and South America were simulated under present wind conditions and for winds during periods of glaciation at 18,000 and 9,000 years ago. The 155 degrees average headings currently observed for Atlantic migrants were found to function well during periods of glaciation and may have been more generally useful during those times than at present

    How Important Is A Postdoc For A Teaching Career?

    Get PDF

    Ageing And Cancer As Diseases Of Epigenesis

    Get PDF
    Cancer and ageing are often said to be diseases of development. During the past fifty years, the genetic components of cancer and ageing have been intensely investigated since development, itself, was seen to be an epiphenomenon of the genome. However, as we have learned more about the expression of the genome, we find that differences in expression can be as important as differences in alleles. It is easier to inactivate a gene by methylation than by mutation, and given that appropriate methylation is essential for normal development, one can immediately see that diseases would result as a consequence of inappropriate epigenetic methylation. While first proposed by Boris Vanyushin in 1973, recent studies have confirmed that inappropriate methylation not only causes diseases, and it also may be the critical factor in ageing and cancers

    Symbiosis As The Way Of Eukaryotic Life: The Dependent Co-Origination Of The Body

    Get PDF
    Molecular analyses of symbiotic relationships are challenging our biological definitions of individuality and supplanting them with a new notion of normal part whole relationships. This new notion is that of a \u27holobiont\u27, a consortium of organisms that becomes a functionally integrated \u27whole\u27. This holobiont includes the zoological organism (the \u27animal\u27) as well as its persistent microbial symbionts. This new individuality is seen on anatomical and physiological levels, where a diversity of symbionts form a new \u27organ system\u27 within the zoological organism and become integrated into its metabolism and development. Moreover, as in normal development, there are reciprocal interactions between the \u27host\u27 organism and its symbionts that alter gene expression in both sets of cells. The immune system, instead of being seen as functioning solely to keep microbes out of the body, is also found to develop, in part, in dialogue with symbionts. Moreover, the immune system is actively involved in the colonization of the zoological organism, functioning as a mechanism for integrating microbes into the animal-cell community. Symbionts have also been found to constitute a second mode of genetic inheritance, providing selectable genetic variation for natural selection. We develop, grow and evolve as multi-genomic consortia/teams/ecosystems

    Review Of The Problem Of Life By C. U. M. Smith

    Get PDF

    The Waiting And Mating Game: Condition Dependent Mate Sampling In Female Gray Treefrogs (Hyla Versicolor)

    Get PDF
    Strong sexual selection by receivers can lead to the evolution of elaborate courtship behaviors in signalers. However the process by which receivers sample signalers and execute mate choice under complex signaling conditions—and thus the realized strength of sexual section—is poorly understood. Moreover, receivers can vary in condition, which can further influence mate sampling strategies. Using wild female frogs we tested two hypotheses at the intersection of these important problems: that some of the individual variation in mate sampling is explained by (1) the reproductive urgency hypothesis, which predicts that receivers in a more urgent reproductive state will sample mates less and/or (2) the reproductive investment hypothesis, which predicts that receivers that have invested less in the current reproductive effort will sample mates less. Eastern gray treefrogs, Hyla versicolor, were collected in amplexus and repeatedly tested for phonotaxis behavior using a dynamic playback assay. To evaluate if hormonal mechanisms explained variation in the mate sampling, three steroid hormones, estradiol, progesterone, and corticosterone, were collected using a noninvasive water-borne hormone assay, validated for this species in the present study. Finally, we measured clutch size (investment) and the duration of time required for each female to oviposit after being reunited with their male mate (urgency). We found repeatability in many of the behaviors, including mate sampling. We found that females with higher concentrations estradiol and corticosterone made quicker choices, and that females with higher progesterone sampled mates more. We also found that female frogs in a more urgent reproductive state had lower concentrations of progesterone and estradiol, thereby providing the first evidence of a relationship between gonadal hormones and reproductive urgency. Collectively we found some support for the reproductive urgency but not the investment hypothesis. Thus, even though a female frog\u27s reproductive readiness is a highly transient life history stage, fine scale variation in her reproductive timeline could mitigate the strength of directional selection
    • …
    corecore