5,603 research outputs found

    Beyond Gazing, Pointing, and Reaching: A Survey of Developmental Robotics

    Get PDF
    Developmental robotics is an emerging field located at the intersection of developmental psychology and robotics, that has lately attracted quite some attention. This paper gives a survey of a variety of research projects dealing with or inspired by developmental issues, and outlines possible future directions

    Respiratory, postural and spatio-kinetic motor stabilization, internal models, top-down timed motor coordination and expanded cerebello-cerebral circuitry: a review

    Get PDF
    Human dexterity, bipedality, and song/speech vocalization in Homo are reviewed within a motor evolution perspective in regard to 

(i) brain expansion in cerebello-cerebral circuitry, 
(ii) enhanced predictive internal modeling of body kinematics, body kinetics and action organization, 
(iii) motor mastery due to prolonged practice, 
(iv) task-determined top-down, and accurately timed feedforward motor adjustment of multiple-body/artifact elements, and 
(v) reduction in automatic preflex/spinal reflex mechanisms that would otherwise restrict such top-down processes. 

Dual-task interference and developmental neuroimaging research argues that such internal modeling based motor capabilities are concomitant with the evolution of 
(vi) enhanced attentional, executive function and other high-level cognitive processes, and that 
(vii) these provide dexterity, bipedality and vocalization with effector nonspecific neural resources. 

The possibility is also raised that such neural resources could 
(viii) underlie human internal model based nonmotor cognitions. 
&#xa

    Brain-Inspired Computational Intelligence via Predictive Coding

    Full text link
    Artificial intelligence (AI) is rapidly becoming one of the key technologies of this century. The majority of results in AI thus far have been achieved using deep neural networks trained with the error backpropagation learning algorithm. However, the ubiquitous adoption of this approach has highlighted some important limitations such as substantial computational cost, difficulty in quantifying uncertainty, lack of robustness, unreliability, and biological implausibility. It is possible that addressing these limitations may require schemes that are inspired and guided by neuroscience theories. One such theory, called predictive coding (PC), has shown promising performance in machine intelligence tasks, exhibiting exciting properties that make it potentially valuable for the machine learning community: PC can model information processing in different brain areas, can be used in cognitive control and robotics, and has a solid mathematical grounding in variational inference, offering a powerful inversion scheme for a specific class of continuous-state generative models. With the hope of foregrounding research in this direction, we survey the literature that has contributed to this perspective, highlighting the many ways that PC might play a role in the future of machine learning and computational intelligence at large.Comment: 37 Pages, 9 Figure

    A Universal Knowledge Model and Cognitive Architecture for Prototyping AGI

    Full text link
    The article identified 42 cognitive architectures for creating general artificial intelligence (AGI) and proposed a set of interrelated functional blocks that an agent approaching AGI in its capabilities should possess. Since the required set of blocks is not found in any of the existing architectures, the article proposes a new cognitive architecture for intelligent systems approaching AGI in their capabilities. As one of the key solutions within the framework of the architecture, a universal method of knowledge representation is proposed, which allows combining various non-formalized, partially and fully formalized methods of knowledge representation in a single knowledge base, such as texts in natural languages, images, audio and video recordings, graphs, algorithms, databases, neural networks, knowledge graphs, ontologies, frames, essence-property-relation models, production systems, predicate calculus models, conceptual models, and others. To combine and structure various fragments of knowledge, archigraph models are used, constructed as a development of annotated metagraphs. As components, the cognitive architecture being developed includes machine consciousness, machine subconsciousness, blocks of interaction with the external environment, a goal management block, an emotional control system, a block of social interaction, a block of reflection, an ethics block and a worldview block, a learning block, a monitoring block, blocks of statement and solving problems, self-organization and meta learning block

    A biologically plausible learning rule for deep learning in the brain

    Get PDF
    Researchers have proposed that deep learning, which is providing important progress in a wide range of high complexity tasks, might inspire new insights into learning in the brain. However, the methods used for deep learning by artificial neural networks are biologically unrealistic and would need to be replaced by biologically realistic counterparts. Previous biologically plausible reinforcement learning rules, like AGREL and AuGMEnT, showed promising results but focused on shallow networks with three layers. Will these learning rules also generalize to networks with more layers and can they handle tasks of higher complexity? Here, we demonstrate that these learning schemes indeed generalize to deep networks, if we include an attention network that propagates information about the selected action to lower network levels. The resulting learning rule, called Q-AGREL, is equivalent to a particular form of error-backpropagation that trains one output unit at any one time. To demonstrate the utility of the learning scheme for larger problems, we trained networks with two hidden layers on the MNIST dataset, a standard and interesting Machine Learning task. Our results demonstrate that the capability of Q-AGREL is comparable to that of error backpropagation, although the learning rate is 1.5-2 times slower because the network has to learn by trial-and-error and updates the action value of only one output unit at a time. Our results provide new insights into how deep learning can be implemented in the brain

    Detecting Biological Motion for Human-Robot Interaction: A Link between Perception and Action

    Get PDF
    One of the fundamental skills supporting safe and comfortable interaction between humans is their capability to understand intuitively each other's actions and intentions. At the basis of this ability is a special-purpose visual processing that human brain has developed to comprehend human motion. Among the first "building blocks" enabling the bootstrapping of such visual processing is the ability to detect movements performed by biological agents in the scene, a skill mastered by human babies in the first days of their life. In this paper, we present a computational model based on the assumption that such visual ability must be based on local low-level visual motion features, which are independent of shape, such as the configuration of the body and perspective. Moreover, we implement it on the humanoid robot iCub, embedding it into a software architecture that leverages the regularities of biological motion also to control robot attention and oculomotor behaviors. In essence, we put forth a model in which the regularities of biological motion link perception and action enabling a robotic agent to follow a human-inspired sensory-motor behavior. We posit that this choice facilitates mutual understanding and goal prediction during collaboration, increasing the pleasantness and safety of the interactio
    • …
    corecore