585 research outputs found

    Biologically inspired object categorization in cluttered scenes

    Get PDF
    The purpose of the thesis, Biologically Inspired Object Categorization system, is to provide an automatic system to classify the real-world images into categories. Generally, computer algorithms classify objects with much lower efficiency than human. Furthermore, some images with complex features such as cat and dog faces are difficult to be classified by ordinary computer algorithms. Therefore, the simulation of the structure and process of a mammalian’s visual cortex is created, which functions similarly to a human’s visual cortex, by using a computer. In this paper, I am presenting a biologically inspired neural network system which processes the images in a hierarchical order, starting from emulation of the retina cells to the virtual cortex. The goal of the network is to recognize objects in images which serve to answer the “what” objects that are in the scene. “What” is one of the pathways the brain recognizes of an object, aside from the ‘where’ pathway. The system can be used in many applications such as categorizing cat and dog faces individually or clustering automobiles in an urban scene

    Analysis of a biologically-inspired system for real-time object recognition

    Get PDF
    We present a biologically-inspired system for real-time, feed-forward object recognition in cluttered scenes. Our system utilizes a vocabulary of very sparse features that are shared between and within different object models. To detect objects in a novel scene, these features are located in the image, and each detected feature votes for all objects that are consistent with its presence. Due to the sharing of features between object models our approach is more scalable to large object databases than traditional methods. To demonstrate the utility of this approach, we train our system to recognize any of 50 objects in everyday cluttered scenes with substantial occlusion. Without further optimization we also demonstrate near-perfect recognition on a standard 3-D recognition problem. Our system has an interpretation as a sparsely connected feed-forward neural network, making it a viable model for fast, feed-forward object recognition in the primate visual system

    BIOLOGICALLY INSPIRED OBJECT RECOGNITION SYSTEM

    Get PDF
    Object Recognition has been a field of interest to many researchers. In fact, it has been referred to as the most important problem in machine or computer vision. Researchers have developed many algorithms to solve the problem of object recognition that are machine vision motivated. On the other hand, biology has motivated researchers to study the visual system of humans and animals such as monkeys and map it into a computational model. Some of these models are based on the feed-forward mechanism of information communication in cortex where the information is communicated between the different visual areas from the lower areas to the top areas in a feed-forward manner; however, the performance of these models has been affected much by the increase of clutter in the scene as well as occlusion. Another mechanism of information processing in the cortex is called the feedback mechanism, where the information from the top areas in the visual system is communicated to the lower areas in a feedback manner; this mechanism has also been mapped into computational models. All these models which are based on the feed-forward or feedback mechanisms have shown promising results. However, during the testing of these models, there have been some issues that affect their performance such as occlusion that prevents objects from being visible. In addition, scenes that contain high amounts of clutter in them, where there are so many objects, have also affected the performance of these models. In fact, the performance has been reported to drop to 74% when systems that are based on these models are subjected to one or both of the issues mentioned above. The human visual system, naturally, utilizes both feed-forward and feedback mechanisms in the operation of perceiving the surrounding environment. Both feed-forward and feedback mechanisms are integrated in a way that makes the visual system of the human outperforms any state-of-the-art system. In this research, a proposed model of object recognition based on the integration concept of the feed-forward and feedback mechanisms in the human visual system is presented

    Object Detection Through Exploration With A Foveated Visual Field

    Get PDF
    We present a foveated object detector (FOD) as a biologically-inspired alternative to the sliding window (SW) approach which is the dominant method of search in computer vision object detection. Similar to the human visual system, the FOD has higher resolution at the fovea and lower resolution at the visual periphery. Consequently, more computational resources are allocated at the fovea and relatively fewer at the periphery. The FOD processes the entire scene, uses retino-specific object detection classifiers to guide eye movements, aligns its fovea with regions of interest in the input image and integrates observations across multiple fixations. Our approach combines modern object detectors from computer vision with a recent model of peripheral pooling regions found at the V1 layer of the human visual system. We assessed various eye movement strategies on the PASCAL VOC 2007 dataset and show that the FOD performs on par with the SW detector while bringing significant computational cost savings.Comment: An extended version of this manuscript was published in PLOS Computational Biology (October 2017) at https://doi.org/10.1371/journal.pcbi.100574

    A Bayesian inference theory of attention: neuroscience and algorithms

    Get PDF
    The past four decades of research in visual neuroscience has generated a large and disparate body of literature on the role of attention [Itti et al., 2005]. Although several models have been developed to describe specific properties of attention, a theoretical framework that explains the computational role of attention and is consistent with all known effects is still needed. Recently, several authors have suggested that visual perception can be interpreted as a Bayesian inference process [Rao et al., 2002, Knill and Richards, 1996, Lee and Mumford, 2003]. Within this framework, topdown priors via cortical feedback help disambiguate noisy bottom-up sensory input signals. Building on earlier work by Rao [2005], we show that this Bayesian inference proposal can be extended to explain the role and predict the main properties of attention: namely to facilitate the recognition of objects in clutter. Visual recognition proceeds by estimating the posterior probabilities for objects and their locations within an image via an exchange of messages between ventral and parietal areas of the visual cortex. Within this framework, spatial attention is used to reduce the uncertainty in feature information; feature-based attention is used to reduce the uncertainty in location information. In conjunction, they are used to recognize objects in clutter. Here, we find that several key attentional phenomena such such as pop-out, multiplicative modulation and change in contrast response emerge naturally as a property of the network. We explain the idea in three stages. We start with developing a simplified model of attention in the brain identifying the primary areas involved and their interconnections. Secondly, we propose a Bayesian network where each node has direct neural correlates within our simplified biological model. Finally, we elucidate the properties of the resulting model, showing that the predictions are consistent with physiological and behavioral evidence

    What are the Visual Features Underlying Rapid Object Recognition?

    Get PDF
    Research progress in machine vision has been very significant in recent years. Robust face detection and identification algorithms are already readily available to consumers, and modern computer vision algorithms for generic object recognition are now coping with the richness and complexity of natural visual scenes. Unlike early vision models of object recognition that emphasized the role of figure-ground segmentation and spatial information between parts, recent successful approaches are based on the computation of loose collections of image features without prior segmentation or any explicit encoding of spatial relations. While these models remain simplistic models of visual processing, they suggest that, in principle, bottom-up activation of a loose collection of image features could support the rapid recognition of natural object categories and provide an initial coarse visual representation before more complex visual routines and attentional mechanisms take place. Focusing on biologically plausible computational models of (bottom-up) pre-attentive visual recognition, we review some of the key visual features that have been described in the literature. We discuss the consistency of these feature-based representations with classical theories from visual psychology and test their ability to account for human performance on a rapid object categorization task

    How Can Selection of Biologically Inspired Features Improve the Performance of a Robust Object Recognition Model?

    Get PDF
    Humans can effectively and swiftly recognize objects in complex natural scenes. This outstanding ability has motivated many computational object recognition models. Most of these models try to emulate the behavior of this remarkable system. The human visual system hierarchically recognizes objects in several processing stages. Along these stages a set of features with increasing complexity is extracted by different parts of visual system. Elementary features like bars and edges are processed in earlier levels of visual pathway and as far as one goes upper in this pathway more complex features will be spotted. It is an important interrogation in the field of visual processing to see which features of an object are selected and represented by the visual cortex. To address this issue, we extended a hierarchical model, which is motivated by biology, for different object recognition tasks. In this model, a set of object parts, named patches, extracted in the intermediate stages. These object parts are used for training procedure in the model and have an important role in object recognition. These patches are selected indiscriminately from different positions of an image and this can lead to the extraction of non-discriminating patches which eventually may reduce the performance. In the proposed model we used an evolutionary algorithm approach to select a set of informative patches. Our reported results indicate that these patches are more informative than usual random patches. We demonstrate the strength of the proposed model on a range of object recognition tasks. The proposed model outperforms the original model in diverse object recognition tasks. It can be seen from the experiments that selected features are generally particular parts of target images. Our results suggest that selected features which are parts of target objects provide an efficient set for robust object recognition
    corecore