5 research outputs found

    Biologically Inspired Sensing and MIMO Radar Array Processing

    Get PDF
    The contributions of this dissertation are in the fields of biologically inspired sensing and multi-input multi-output: MIMO) radar array processing. In our research on biologically inspired sensing, we focus on the mechanically coupled ears of the female Ormia ochracea. Despite the small distance between its ears, the Ormia has a remarkable localization ability. We statistically analyze the localization accuracy of the Ormia\u27s coupled ears, and illustrate the improvement in the localization performance due to the mechanical coupling. Inspired by the Ormia\u27s ears, we analytically design coupled small-sized antenna arrays with high localization accuracy and radiation performance. Such arrays are essential for sensing systems in military and civil applications, which are confined to small spaces. We quantitatively demonstrate the improvement in the antenna array\u27s radiation and localization performance due to the biologically inspired coupling. On MIMO radar, we first propose a statistical target detection method in the presence of realistic clutter. We use a compound-Gaussian distribution to model the heavy tailed characteristics of sea and foliage clutter. We show that MIMO radars are useful to discriminate a target from clutter using the spatial diversity of the illuminated area, and hence MIMO radar outperforms conventional phased-array radar in terms of target-detection capability. Next, we develop a robust target detector for MIMO radar in the presence of a phase synchronization mismatch between transmitter and receiver pairs. Such mismatch often occurs due to imperfect knowledge of the locations as well as local oscillator characteristics of the antennas, but this fact has been ignored by most researchers. Considering such errors, we demonstrate the degradation in detection performance. Finally, we analyze the sensitivity of MIMO radar target detection to changes in the cross-correlation levels: CCLs) of the received signals. Prior research about MIMO radar assumes orthogonality among the received signals for all delay and Doppler pairs. However, due to the use of antennas which are widely separated in space, it is impossible to maintain this orthogonality in practice. We develop a target-detection method considering the non-orthogonality of the received data. In contrast to the common assumption, we observe that the effect of non-orthogonality is significant on detection performance

    Biologically inspired coupled antenna array for direction of arrival estimation

    No full text

    Design of large polyphase filters in the Quadratic Residue Number System

    Full text link

    Temperature aware power optimization for multicore floating-point units

    Full text link
    corecore