15 research outputs found

    A highly parameterized and efficient FPGA-based skeleton for pairwise biological sequence alignment

    Get PDF

    Sequence information signal processor

    Get PDF
    An electronic circuit is used to compare two sequences, such as genetic sequences, to determine which alignment of the sequences produces the greatest similarity. The circuit includes a linear array of series-connected processors, each of which stores a single element from one of the sequences and compares that element with each successive element in the other sequence. For each comparison, the processor generates a scoring parameter that indicates which segment ending at those two elements produces the greatest degree of similarity between the sequences. The processor uses the scoring parameter to generate a similar scoring parameter for a comparison between the stored element and the next successive element from the other sequence. The processor also delivers the scoring parameter to the next processor in the array for use in generating a similar scoring parameter for another pair of elements. The electronic circuit determines which processor and alignment of the sequences produce the scoring parameter with the highest value

    Protein Alignment Systolic Array Throughput Optimization

    Get PDF
    Protein comparison is gaining importance year after year since it has been demonstrated that biologists can find cor- relation between different species, or genetic mutations that can lead to cancer and genetic diseases. Protein sequence alignment is the most computational intensive task when performing protein comparison. In order to speed-up alignment, dedicated processors that can perform different computations in parallel have been designed. Among them, the best performance have been achieved using Systolic Arrays. However, when the Processing Elements of the Systolic Array have an internal loop, performance could be highly reduced. In this work we present an architectural strategy to address this problem applying pipeline interleaving; this strategy is applied to a Systolic Array for Smith Waterman algorithm that we designed. Results encourage the adoption of pipeline interleaving for parallel circuits with loop based Processing Elements. We demonstrate that important benefits in terms of higher operating frequency can be derived without so relevant costs as increased complexity, area and power required

    Sequence information signal processor for local and global string comparisons

    Get PDF
    A sequence information signal processing integrated circuit chip designed to perform high speed calculation of a dynamic programming algorithm based upon the algorithm defined by Waterman and Smith. The signal processing chip of the present invention is designed to be a building block of a linear systolic array, the performance of which can be increased by connecting additional sequence information signal processing chips to the array. The chip provides a high speed, low cost linear array processor that can locate highly similar global sequences or segments thereof such as contiguous subsequences from two different DNA or protein sequences. The chip is implemented in a preferred embodiment using CMOS VLSI technology to provide the equivalent of about 400,000 transistors or 100,000 gates. Each chip provides 16 processing elements, and is designed to provide 16 bit, two's compliment operation for maximum score precision of between -32,768 and +32,767. It is designed to provide a comparison between sequences as long as 4,194,304 elements without external software and between sequences of unlimited numbers of elements with the aid of external software. Each sequence can be assigned different deletion and insertion weight functions. Each processor is provided with a similarity measure device which is independently variable. Thus, each processor can contribute to maximum value score calculation using a different similarity measure

    Second generation biological signal processor. Final progress report, February 15, 1993--February 14, 1995

    Full text link

    Fault detection and bypass in a sequence information signal processor

    Get PDF
    The invention comprises a plurality of scan registers, each such register respectively associated with a processor element; an on-chip comparator, encoder and fault bypass register. Each scan register generates a unitary signal the logic state of which depends on the correctness of the input from the previous processor in the systolic array. These unitary signals are input to a common comparator which generates an output indicating whether or not an error has occurred. These unitary signals are also input to an encoder which identifies the location of any fault detected so that an appropriate multiplexer can be switched to bypass the faulty processor element. Input scan data can be readily programmed to fully exercise all of the processor elements so that no fault can remain undetected

    Center for Space Microelectronics Technology

    Get PDF
    The 1991 Technical Report of the Jet Propulsion Laboratory Center for Space Microelectronics Technology summarizes the technical accomplishments, publications, presentations, and patents of the Center during the past year. The report lists 193 publications, 211 presentations, and 125 new technology reports and patents

    Center for space microelectronics technology

    Get PDF
    The 1992 Technical Report of the Jet Propulsion Laboratory Center for Space Microelectronics Technology summarizes the technical accomplishments, publications, presentations, and patents of the center during the past year. The report lists 187 publications, 253 presentations, and 111 new technology reports and patents in the areas of solid-state devices, photonics, advanced computing, and custom microcircuits

    FPGA acceleration of sequence analysis tools in bioinformatics

    Full text link
    Thesis (Ph.D.)--Boston UniversityWith advances in biotechnology and computing power, biological data are being produced at an exceptional rate. The purpose of this study is to analyze the application of FPGAs to accelerate high impact production biosequence analysis tools. Compared with other alternatives, FPGAs offer huge compute power, lower power consumption, and reasonable flexibility. BLAST has become the de facto standard in bioinformatic approximate string matching and so its acceleration is of fundamental importance. It is a complex highly-optimized system, consisting of tens of thousands of lines of code and a large number of heuristics. Our idea is to emulate the main phases of its algorithm on FPGA. Utilizing our FPGA engine, we quickly reduce the size of the database to a small fraction, and then use the original code to process the query. Using a standard FPGA-based system, we achieved 12x speedup over a highly optimized multithread reference code. Multiple Sequence Alignment (MSA)--the extension of pairwise Sequence Alignment to multiple Sequences--is critical to solve many biological problems. Previous attempts to accelerate Clustal-W, the most commonly used MSA code, have directly mapped a portion of the code to the FPGA. We use a new approach: we apply prefiltering of the kind commonly used in BLAST to perform the initial all-pairs alignments. This results in a speedup of from 8Ox to 190x over the CPU code (8 cores). The quality is comparable to the original according to a commonly used benchmark suite evaluated with respect to multiple distance metrics. The challenge in FPGA-based acceleration is finding a suitable application mapping. Unfortunately many software heuristics do not fall into this category and so other methods must be applied. One is restructuring: an entirely new algorithm is applied. Another is to analyze application utilization and develop accuracy/performance tradeoffs. Using our prefiltering approach and novel FPGA programming models we have achieved significant speedup over reference programs. We have applied approximation, seeding, and filtering to this end. The bulk of this study is to introduce the pros and cons of these acceleration models for biosequence analysis tools
    corecore