269,472 research outputs found

    Quantum computation and the physical computation level of biological information processing

    Full text link
    On the basis of introspective analysis, we establish a crucial requirement for the physical computation basis of consciousness: it should allow processing a significant amount of information together at the same time. Classical computation does not satisfy the requirement. At the fundamental physical level, it is a network of two body interactions, each the input-output transformation of a universal Boolean gate. Thus, it cannot process together at the same time more than the three bit input of this gate - many such gates in parallel do not count since the information is not processed together. Quantum computation satisfies the requirement. At the light of our recent explanation of the speed up, quantum measurement of the solution of the problem is analogous to a many body interaction between the parts of a perfect classical machine, whose mechanical constraints represent the problem to be solved. The many body interaction satisfies all the constraints together at the same time, producing the solution in one shot. This shades light on the physical computation level of the theories that place consciousness in quantum measurement and explains how informations coming from disparate sensorial channels come together in the unity of subjective experience. The fact that the fundamental mechanism of consciousness is the same of the quantum speed up, gives quantum consciousness a potentially enormous evolutionary advantage.Comment: 13 page

    Biological Computation

    Get PDF
    In this article, the term biological computation refers to the proposal that living organisms themselves perform computations, and, more specifically, that the abstract ideas of information and computation may be key to understanding biology in a more unified manner. It is important to point out that the study of biological computation is typically not the focus of the field of computational biology, which applies computing tools to the solution of specific biological problems. Likewise, biological computation is distinct from the field of biologically-inspired computing, which borrows ideas from biological systems such as the brain, insect colonies, and the immune system in order to develop new algorithms for specific computer science applications. While there is some overlap among these different meldings of biology and computer science, it is only the study of biological computation that asks, specifically, if, how, and why living systems can be viewed as fundamentally computational in nature

    Quantum information in the Posner model of quantum cognition

    Get PDF
    Matthew Fisher recently postulated a mechanism by which quantum phenomena could influence cognition: Phosphorus nuclear spins may resist decoherence for long times, especially when in Posner molecules. The spins would serve as biological qubits. We imagine that Fisher postulates correctly. How adroitly could biological systems process quantum information (QI)? We establish a framework for answering. Additionally, we construct applications of biological qubits to quantum error correction, quantum communication, and quantum computation. First, we posit how the QI encoded by the spins transforms as Posner molecules form. The transformation points to a natural computational basis for qubits in Posner molecules. From the basis, we construct a quantum code that detects arbitrary single-qubit errors. Each molecule encodes one qutrit. Shifting from information storage to computation, we define the model of Posner quantum computation. To illustrate the model's quantum-communication ability, we show how it can teleport information incoherently: A state's weights are teleported. Dephasing results from the entangling operation's simulation of a coarse-grained Bell measurement. Whether Posner quantum computation is universal remains an open question. However, the model's operations can efficiently prepare a Posner state usable as a resource in universal measurement-based quantum computation. The state results from deforming the Affleck-Kennedy-Lieb-Tasaki (AKLT) state and is a projected entangled-pair state (PEPS). Finally, we show that entanglement can affect molecular-binding rates, boosting a binding probability from 33.6% to 100% in an example. This work opens the door for the QI-theoretic analysis of biological qubits and Posner molecules.Comment: Published versio

    A Review on Biological Inspired Computation in Cryptology

    Get PDF
    Cryptology is a field that concerned with cryptography and cryptanalysis. Cryptography, which is a key technology in providing a secure transmission of information, is a study of designing strong cryptographic algorithms, while cryptanalysis is a study of breaking the cipher. Recently biological approaches provide inspiration in solving problems from various fields. This paper reviews major works in the application of biological inspired computational (BIC) paradigm in cryptology. The paper focuses on three BIC approaches, namely, genetic algorithm (GA), artificial neural network (ANN) and artificial immune system (AIS). The findings show that the research on applications of biological approaches in cryptology is minimal as compared to other fields. To date only ANN and GA have been used in cryptanalysis and design of cryptographic primitives and protocols. Based on similarities that AIS has with ANN and GA, this paper provides insights for potential application of AIS in cryptology for further research

    Computation of forces from deformed visco-elastic biological tissues

    Get PDF
    We present a least-squares based inverse analysis of visco-elastic biological tissues. The proposed method computes the set of contractile forces (dipoles) at the cell boundaries that induce the observed and quantified deformations. We show that the computation of these forces requires the regularisation of the problem functional for some load configurations that we study here. The functional measures the error of the dynamic problem being discretised in time with a second-order implicit time-stepping and in space with standard finite elements. We analyse the uniqueness of the inverse problem and estimate the regularisation parameter by means of an L-curved criterion. We apply the methodology to a simple toy problem and to an in vivo set of morphogenetic deformations of the Drosophila embryo.Peer ReviewedPostprint (author's final draft

    Biological computation through recurrence

    Full text link
    One of the defining features of living systems is their adaptability to changing environmental conditions. This requires organisms to extract temporal and spatial features of their environment, and use that information to compute the appropriate response. In the last two decades, a growing body or work, mainly coming from the machine learning and computational neuroscience fields, has shown that such complex information processing can be performed by recurrent networks. In those networks, temporal computations emerge from the interaction between incoming stimuli and the internal dynamic state of the network. In this article we review our current understanding of how recurrent networks can be used by biological systems, from cells to brains, for complex information processing. Rather than focusing on sophisticated, artificial recurrent architectures such as long short-term memory (LSTM) networks, here we concentrate on simpler network structures and learning algorithms that can be expected to have been found by evolution. We also review studies showing evidence of naturally occurring recurrent networks in living organisms. Lastly, we discuss some relevant evolutionary aspects concerning the emergence of this natural computation paradigm.Comment: 19 pages, 3 figure
    • …
    corecore