3 research outputs found

    Bioinspired sensory integration for environment-perception embedded systems

    No full text
    In this work, the architecture of a system intended for bioinspired environment perception is described. Considering the technology trends and applications requirements, the properties of such a system are discussed. The system consists of four main blocks: a) A set of different integrated microsensors and microactuators with the associated signal conditioning circuits; b) A data encoding block that in its simplest form performs spike encoding of information; c) a bioinspired digital processing block that efficiently emulates a spiking neuron network; d) a monitoring and self-adaptation block that provides feedback to the sensors and actuators. In its final implementation, the full system would eventually be almost fully integrated in a CMOS integrated circuit

    Bioinspired sensory integration for environment-perception embedded systems

    No full text
    In this work, the architecture of a system intended for bioinspired environment perception is described. Considering the technology trends and applications requirements, the properties of such a system are discussed. The system consists of four main blocks: a) A set of different integrated microsensors and microactuators with the associated signal conditioning circuits; b) A data encoding block that in its simplest form performs spike encoding of information; c) a bioinspired digital processing block that efficiently emulates a spiking neuron network; d) a monitoring and self-adaptation block that provides feedback to the sensors and actuators. In its final implementation, the full system would eventually be almost fully integrated in a CMOS integrated circuit.Postprint (published version

    Bioinspired sensory integration for environment-perception embedded systems

    No full text
    In this work, the architecture of a system intended for bioinspired environment perception is described. Considering the technology trends and applications requirements, the properties of such a system are discussed. The system consists of four main blocks: a) A set of different integrated microsensors and microactuators with the associated signal conditioning circuits; b) A data encoding block that in its simplest form performs spike encoding of information; c) a bioinspired digital processing block that efficiently emulates a spiking neuron network; d) a monitoring and self-adaptation block that provides feedback to the sensors and actuators. In its final implementation, the full system would eventually be almost fully integrated in a CMOS integrated circuit
    corecore