14,863 research outputs found

    Jeeva: Enterprise Grid-enabled Web Portal for Protein Secondary Structure Prediction

    Get PDF
    This paper presents a Grid portal for protein secondary structure prediction developed by using services of Aneka, a .NET-based enterprise Grid technology. The portal is used by research scientists to discover new prediction structures in a parallel manner. An SVM (Support Vector Machine)-based prediction algorithm is used with 64 sample protein sequences as a case study to demonstrate the potential of enterprise Grids.Comment: 7 page

    Optimizing Splicing Junction Detection in Next Generation Sequencing Data on a Virtual-GRID Infrastructure

    Get PDF
    The new protocol for sequencing the messenger RNA in a cell, named RNA-seq produce millions of short sequence fragments. Next Generation Sequencing technology allows more accurate analysis but increase needs in term of computational resources. This paper describes the optimization of a RNA-seq analysis pipeline devoted to splicing variants detection, aimed at reducing computation time and providing a multi-user/multisample environment. This work brings two main contributions. First, we optimized a well-known algorithm called TopHat by parallelizing some sequential mapping steps. Second, we designed and implemented a hybrid virtual GRID infrastructure allowing to efficiently execute multiple instances of TopHat running on different samples or on behalf of different users, thus optimizing the overall execution time and enabling a flexible multi-user environmen

    Virtual Environment for Next Generation Sequencing Analysis

    Get PDF
    Next Generation Sequencing technology, on the one hand, allows a more accurate analysis, and, on the other hand, increases the amount of data to process. A new protocol for sequencing the messenger RNA in a cell, known as RNA- Seq, generates millions of short sequence fragments in a single run. These fragments, or reads, can be used to measure levels of gene expression and to identify novel splice variants of genes. The proposed solution is a distributed architecture consisting of a Grid Environment and a Virtual Grid Environment, in order to reduce processing time by making the system scalable and flexibl

    A Taxonomy of Workflow Management Systems for Grid Computing

    Full text link
    With the advent of Grid and application technologies, scientists and engineers are building more and more complex applications to manage and process large data sets, and execute scientific experiments on distributed resources. Such application scenarios require means for composing and executing complex workflows. Therefore, many efforts have been made towards the development of workflow management systems for Grid computing. In this paper, we propose a taxonomy that characterizes and classifies various approaches for building and executing workflows on Grids. We also survey several representative Grid workflow systems developed by various projects world-wide to demonstrate the comprehensiveness of the taxonomy. The taxonomy not only highlights the design and engineering similarities and differences of state-of-the-art in Grid workflow systems, but also identifies the areas that need further research.Comment: 29 pages, 15 figure

    Provenance-based validation of E-science experiments

    No full text
    E-Science experiments typically involve many distributed services maintained by different organisations. After an experiment has been executed, it is useful for a scientist to verify that the execution was performed correctly or is compatible with some existing experimental criteria or standards. Scientists may also want to review and verify experiments performed by their colleagues. There are no existing frameworks for validating such experiments in today's e-Science systems. Users therefore have to rely on error checking performed by the services, or adopt other ad hoc methods. This paper introduces a platform-independent framework for validating workflow executions. The validation relies on reasoning over the documented provenance of experiment results and semantic descriptions of services advertised in a registry. This validation process ensures experiments are performed correctly, and thus results generated are meaningful. The framework is tested in a bioinformatics application that performs protein compressibility analysis
    corecore