205,940 research outputs found

    Evaluating the Relationship Between Running Times and DNA Sequence Sizes using a Generic-Based Filtering Program.

    Get PDF
    Generic programming depends on the decomposition of programs into simpler components which may be developed separately and combined arbitrarily, subject only to well- defined interfaces. Bioinformatics deals with the application of computational techniques to data present in the Biological sciences. A genetic sequence is a succession of letters which represents the basic structure of a hypothetical DNA molecule, with the capacity to carry information. This research article studied the relationship between the running times of a generic-based filtering program and different samples of genetic sequences in an increasing order of magnitude. A graphical result was obtained to adequately depict this relationship. It was also discovered that the complexity of the generic tree program was O (log2 N). This research article provided one of the systematic approaches of generic programming to Bioinformatics, which could be instrumental in elucidating major discoveries in Bioinformatics, as regards efficient data management and analysis

    mockrobiota: a Public Resource for Microbiome Bioinformatics Benchmarking.

    Get PDF
    Mock communities are an important tool for validating, optimizing, and comparing bioinformatics methods for microbial community analysis. We present mockrobiota, a public resource for sharing, validating, and documenting mock community data resources, available at http://caporaso-lab.github.io/mockrobiota/. The materials contained in mockrobiota include data set and sample metadata, expected composition data (taxonomy or gene annotations or reference sequences for mock community members), and links to raw data (e.g., raw sequence data) for each mock community data set. mockrobiota does not supply physical sample materials directly, but the data set metadata included for each mock community indicate whether physical sample materials are available. At the time of this writing, mockrobiota contains 11 mock community data sets with known species compositions, including bacterial, archaeal, and eukaryotic mock communities, analyzed by high-throughput marker gene sequencing. IMPORTANCE The availability of standard and public mock community data will facilitate ongoing method optimizations, comparisons across studies that share source data, and greater transparency and access and eliminate redundancy. These are also valuable resources for bioinformatics teaching and training. This dynamic resource is intended to expand and evolve to meet the changing needs of the omics community

    BioGUID: resolving, discovering, and minting identifiers for biodiversity informatics

    Get PDF
    Background: Linking together the data of interest to biodiversity researchers (including specimen records, images, taxonomic names, and DNA sequences) requires services that can mint, resolve, and discover globally unique identifiers (including, but not limited to, DOIs, HTTP URIs, and LSIDs). Results: BioGUID implements a range of services, the core ones being an OpenURL resolver for bibliographic resources, and a LSID resolver. The LSID resolver supports Linked Data-friendly resolution using HTTP 303 redirects and content negotiation. Additional services include journal ISSN look-up, author name matching, and a tool to monitor the status of biodiversity data providers. Conclusion: BioGUID is available at http://bioguid.info/. Source code is available from http://code.google.com/p/bioguid/

    3D time series analysis of cell shape using Laplacian approaches

    Get PDF
    Background: Fundamental cellular processes such as cell movement, division or food uptake critically depend on cells being able to change shape. Fast acquisition of three-dimensional image time series has now become possible, but we lack efficient tools for analysing shape deformations in order to understand the real three-dimensional nature of shape changes. Results: We present a framework for 3D+time cell shape analysis. The main contribution is three-fold: First, we develop a fast, automatic random walker method for cell segmentation. Second, a novel topology fixing method is proposed to fix segmented binary volumes without spherical topology. Third, we show that algorithms used for each individual step of the analysis pipeline (cell segmentation, topology fixing, spherical parameterization, and shape representation) are closely related to the Laplacian operator. The framework is applied to the shape analysis of neutrophil cells. Conclusions: The method we propose for cell segmentation is faster than the traditional random walker method or the level set method, and performs better on 3D time-series of neutrophil cells, which are comparatively noisy as stacks have to be acquired fast enough to account for cell motion. Our method for topology fixing outperforms the tools provided by SPHARM-MAT and SPHARM-PDM in terms of their successful fixing rates. The different tasks in the presented pipeline for 3D+time shape analysis of cells can be solved using Laplacian approaches, opening the possibility of eventually combining individual steps in order to speed up computations

    Characteristics of Wetting-Induced Bacteriophage Blooms in Biological Soil Crust.

    Get PDF
    Biological soil crusts (biocrusts) are photosynthetic "hot spots" in deserts and cover ∼12% of the Earth's terrestrial surface, and yet they face an uncertain future given expected shifts in rainfall events. Laboratory wetting of biocrust communities is known to cause a bloom of Firmicutes which rapidly become dominant community members within 2 days after emerging from a sporulated state. We hypothesized that their bacteriophages (phages) would respond to such a dramatic increase in their host's abundance. In our experiment, wetting caused Firmicutes to bloom and triggered a significant depletion of cyanobacterial diversity. We used genome-resolved metagenomics to link phage to their hosts and found that the bloom of the genus Bacillus correlated with a dramatic increase in the number of Caudovirales phages targeting these diverse spore-formers (r = 0.762). After 2 days, we observed dramatic reductions in the relative abundances of Bacillus, while the number of Bacillus phages continued to increase, suggestive of a predator-prey relationship. We found predicted auxiliary metabolic genes (AMGs) associated with sporulation in several Caudovirales genomes, suggesting that phages may influence and even benefit from sporulation dynamics in biocrusts. Prophage elements and CRISPR-Cas repeats in Firmicutes metagenome-assembled genomes (MAGs) provide evidence of recent infection events by phages, which were corroborated by mapping viral contigs to their host MAGs. Combined, these findings suggest that the blooming Firmicutes become primary targets for biocrust Caudovirales phages, consistent with the classical "kill-the-winner" hypothesis.IMPORTANCE This work forms part of an overarching research theme studying the effects of a changing climate on biological soil crust (biocrust) in the Southwestern United States. To our knowledge, this study was the first to characterize bacteriophages in biocrust and offers a view into the ecology of phages in response to a laboratory wetting experiment. The phages identified here represent lineages of Caudovirales, and we found that the dynamics of their interactions with their Firmicutes hosts explain the collapse of a bacterial bloom that was induced by wetting. Moreover, we show that phages carried host-altering metabolic genes and found evidence of proviral infection and CRISPR-Cas repeats within host genomes. Our results suggest that phages exert controls on population density by lysing dominant bacterial hosts and that they further impact biocrust by acquiring host genes for sporulation. Future research should explore how dominant these phages are in other biocrust communities and quantify how much the control and lysis of blooming populations contributes to nutrient cycling in biocrusts
    • …
    corecore