3 research outputs found

    A modified model for the Lobula Giant Movement Detector and its FPGA implementation

    Get PDF
    The Lobula Giant Movement Detector (LGMD) is a wide-field visual neuron located in the Lobula layer of the Locust nervous system. The LGMD increases its firing rate in response to both the velocity of an approaching object and the proximity of this object. It has been found that it can respond to looming stimuli very quickly and trigger avoidance reactions. It has been successfully applied in visual collision avoidance systems for vehicles and robots. This paper introduces a modified neural model for LGMD that provides additional depth direction information for the movement. The proposed model retains the simplicity of the previous model by adding only a few new cells. It has been simplified and implemented on a Field Programmable Gate Array (FPGA), taking advantage of the inherent parallelism exhibited by the LGMD, and tested on real-time video streams. Experimental results demonstrate the effectiveness as a fast motion detector

    Bio-Inspired Optic Flow Sensors for Artificial Compound Eyes.

    Full text link
    Compound eyes in flying insects have been studied to reveal the mysterious cues of vision-based flying mechanisms inside the smallest flying creatures in nature. Especially, researchers in the robotic area have made efforts to transfer the findings into their less than palm-sized unmanned air vehicles, micro-air-vehicles (MAVs). The miniaturized artificial compound eye is one of the key components in this system to provide visual information for navigation. Multi-directional sensing and motion estimation capabilities can give wide field-of-view (FoV) optic flows up to 360 solid angle. By deciphering the wide FoV optic flows, relevant information on the self-status of flight is parsed and utilized for flight command generation. In this work, we realize the wide-field optic flow sensing in a pseudo-hemispherical configuration realized by mounting a number of 2D array optic flow sensors on a flexible PCB module. The flexible PCBs can be bent to form a compound eye shape by origami packaging. From this scheme, the multiple 2D optic flow sensors can provide a modular, expandable configuration to meet low power constraints. The 2D optic flow sensors satisfy the low power constraint by employing a novel bio-inspired algorithm. We have modified the conventional elementary motion detector (EMD), which is known to be a basic operational unit in the insect’s visual pathways. We have implemented a bio-inspired time-stamp-based algorithm in mixed-mode circuits for robust operation. By optimal partitioning of analog to digital signal domains, we can realize the algorithm mostly in digital domain in a column-parallel circuits. Only the feature extraction algorithm is incorporated inside a pixel in analog circuits. In addition, the sensors integrate digital peripheral circuits to provide modular expandability. The on-chip data compressor can reduce the data rate by a factor of 8, so that it can connect a total of 25 optic flow sensors in a 4-wired Serial Peripheral Interface (SPI) bus. The packaged compound eye can transmit full-resolution optic flow data through the single 3MB/sec SPI bus. The fabricated 2D optic flow prototype sensor has achieved the power consumption of 243.3pJ/pixel and the maximum detectable optic flow of 1.96rad/sec at 120fps and 60 FoV.PhDElectrical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/108841/1/sssjpark_1.pd

    A 160Ă—120 Bio-Inspired Vision Chip for Edge Detection Using a MOS-type Photodetector for Logarithmic Active Pixel Sensor

    No full text
    corecore