3 research outputs found

    Bio-Inspired Filter Banks for SSVEP-based Brain-Computer Interfaces

    Full text link
    Brain-computer interfaces (BCI) have the potential to play a vital role in future healthcare technologies by providing an alternative way of communication and control. More specifically, steady-state visual evoked potential (SSVEP) based BCIs have the advantage of higher accuracy and higher information transfer rate (ITR). In order to fully exploit the capabilities of such devices, it is necessary to understand the features of SSVEP and design the system considering its biological characteristics. This paper introduces bio-inspired filter banks (BIFB) for a novel SSVEP frequency detection method. It is known that SSVEP response to a flickering visual stimulus is frequency selective and gets weaker as the frequency of the stimuli increases. In the proposed approach, the gain and bandwidth of the filters are designed and tuned based on these characteristics while also incorporating harmonic SSVEP responses. This method not only improves the accuracy but also increases the available number of commands by allowing the use of stimuli frequencies elicit weak SSVEP responses. The BIFB method achieved reliable performance when tested on datasets available online and compared with two well-known SSVEP frequency detection methods, power spectral density analysis (PSDA) and canonical correlation analysis (CCA). The results show the potential of bio-inspired design which will be extended to include further SSVEP characteristic (e.g. time-domain waveform) for future SSVEP based BCIs.Comment: 2016 IEEE International Conference on Biomedical and Health Informatics (BHI

    Machine Learning in VEP-based BCI

    Get PDF
    Antud töös esitatakse visuaalse stiimuliga esilekutsutud potentsiaalidel põhineva ajuarvuti liidese (AAL) jaoks klassifitseerimisreegel, mis põhineb tunnuste ja lävendväärtuste omavahelisel võrdlusel. Klassifitseerimise jaoks optimaalsete lävendväärtuste leidmine formaliseeritakse maksimeerimisülesandena, kus maksimeeritakse AALi informatsiooniedastamise kiirus, mille arvutamiseks tuletatakse eraldi valem, et vältida standardse valemi poolt vajalikke eeldusi. Esitatud reegel näitab AALi klassifitseerimisülesandes häid tulemusi, saavutades informatsiooni edastamise kiiruseks kuni 60 bitti minutis. Samuti võimaldab pakutud reegel vältida vale-ennustusi, mis on oluline AALi kasutamiseks igapäevaelus. AALid omavad suurt potentsiaali medistsiini valdkonnas, kuna võimaldavad raske puudega või halvatud isikutel seadmeid kontrollida.In this thesis, a classification method for SSVEP-based BCI is proposed. The classification method is based on simple comparisons of extracted feature values and thresholds and it involves a way of optimising the thresholds. Optimising the thresholds is formalised as a maximisation task of the information transfer rate of BCI, but instead of using the standard formula for calculating ITR, more general formula is derived. This allows the thresholds to be automatically optimised and avoids calculating incorrect ITR estimate.The proposed method shows good performance in classifying targets of a BCI and achieves ITR as high as 60 bit/min. The proposed method also provides a way to reduce false classifications, which is important in real-world applications. BCIs have high potential to be used in the field of medicine as they provides a way for severely disabled people to control external devices
    corecore