1,642 research outputs found

    High-TcT_c mechanism through analysis of diverging effective mass for YaBa2_2Cu3_3O6+x_{6+x} and pairing symmetry in cuprate superconductors

    Full text link
    In order to clarify the high-TcT_c mechanism in inhomogeneous cuprate layer superconductors, we deduce and find the correlation strength not revealed before, contributing to the formation of the Cooper pair and the 2-D density of state, and demonstrate the pairing symmetry in the superconductors still controversial. To the open questions, the fitting and analysis of the diverging effective mass with decreasing doping, extracted from the acquired quantum-oscillation data in underdoped YBCOO6+x_{6+x} superconductors, can provide solutions. Here, the results of the fitting using the extended Brinkman-Rice(BR) picture reveal the nodal constant Fermi energy with the maximum carrier density, a constant Coulomb correlation strength kBRk_{BR}=U/UcU/U_c>0.90, and a growing Fermi arc from the nodal Fermi point to the isotropic Fermi surface with an increasing xx. The growing of the Fermi arc indicates that a superconducting gap develops with xx from the node to the anti-node. The large kBRk_{BR} results from the dd-wave MIT for the pseudogap phase in lightly doped superconductors, which can be direct evidence for high-TcT_c superconductivity. The quantum critical point is regarded as the nodal Fermi point satisfied with the BR picture. The experimentally-measured mass diverging behavior is an average effect and the true effective mass is constant. As an application of the nodal constant carrier density, to find a superconducting node gap, the ARPES data and tunneling data are analyzed. The superconducting node gap is a precursor of ss-wave symmetry in underdoped cuprates. The half-flux quantum, induced by the circulation of dd-wave supercurrent and observed by the phase sensitive Josephson-pi junction experiments, is not shown due to anisotropic or asymmetric effect appearing in superconductors with trapped flux. The absence of dd-wave superconducting pairing symmetry is also revealed.Comment: 19 pages, 21 figure

    Topotactic synthesis of a new BiS2-based superconductor Bi2(O,F)S2

    Full text link
    A new BiS2-based superconductor Bi2(O,F)S2 was discovered. This is a layered compound consisting of alternate stacking structure of rock-salt-type BiS2 superconducting layer and fluorite-type Bi(O,F) blocking layer. Bi2(O,F)S2 was obtained as the main phase by topotactic fluorination of undoped Bi2OS2 using XeF2, which is the first topotactic synthesis of an electron-doped superconductor via reductive fluorination. With increasing F-content, a- and c-axis length increased and decreased, respectively, and Tc increased up to 5.1 K.Comment: 9 pages, 4 figure

    Hole-Doped Cuprate High Temperature Superconductors

    Full text link
    Hole-doped cuprate high temperature superconductors have ushered in the modern era of high temperature superconductivity (HTS) and have continued to be at center stage in the field. Extensive studies have been made, many compounds discovered, voluminous data compiled, numerous models proposed, many review articles written, and various prototype devices made and tested with better performance than their nonsuperconducting counterparts. The field is indeed vast. We have therefore decided to focus on the major cuprate materials systems that have laid the foundation of HTS science and technology and present several simple scaling laws that show the systematic and universal simplicity amid the complexity of these material systems, while referring readers interested in the HTS physics and devices to the review articles. Developments in the field are mostly presented in chronological order, sometimes with anecdotes, in an attempt to share some of the moments of excitement and despair in the history of HTS with readers, especially the younger ones.Comment: Accepted for publication in Physica C, Special Issue on Superconducting Materials; 27 pages, 2 tables, 30 figure

    Higher superconducting transition temperature by breaking the universal pressure relation

    Full text link
    By investigating the bulk superconducting state via dc magnetization measurements, we have discovered a common resurgence of the superconductive transition temperatures (Tcs) of the monolayer Bi2Sr2CuO6+{\delta} (Bi2201) and bilayer Bi2Sr2CaCu2O8+{\delta} (Bi2212) to beyond the maximum Tcs (Tc-maxs) predicted by the universal relation between Tc and doping (p) or pressure (P) at higher pressures. The Tc of under-doped Bi2201 initially increases from 9.6 K at ambient to a peak at ~ 23 K at ~ 26 GPa and then drops as expected from the universal Tc-P relation. However, at pressures above ~ 40 GPa, Tc rises rapidly without any sign of saturation up to ~ 30 K at ~ 51 GPa. Similarly, the Tc for the slightly overdoped Bi2212 increases after passing a broad valley between 20-36 GPa and reaches ~ 90 K without any sign of saturation at ~ 56 GPa. We have therefore attributed this Tc-resurgence to a possible pressure-induced electronic transition in the cuprate compounds due to a charge transfer between the Cu 3d_(x^2-y^2 ) and the O 2p bands projected from a hybrid bonding state, leading to an increase of the density of states at the Fermi level, in agreement with our density functional theory calculations. Similar Tc-P behavior has also been reported in the trilayer Br2Sr2Ca2Cu3O10+{\delta} (Bi2223). These observations suggest that higher Tcs than those previously reported for the layered cuprate high temperature superconductors can be achieved by breaking away from the universal Tc-P relation through the application of higher pressures.Comment: 13 pages, including 5 figure

    Development of high Tc (greater than 110K) Bi, Tl and Y-based materials as superconducting circuit elements

    Get PDF
    This report is presented in two parts. Part 1 deals primarily with Bi-based materials and a small amount of work on a Y-based composition while Part 2 covers work on Tl-based materials. In Part 1, a reliable and reproducible process for producing bulk bismuth-based superconductors has been developed. It is noted however, that a percentage of the tapecast material experiences curling and fracturing after a 30 hour sintering period and is thus in need of further examination. The Bi-Sr-Ca-Cu-O (BSCCO) material has been characterized by critical temperature data, X-ray diffraction data, and surface morphology. In the case of T sub c, it is not critical to anneal the material. It appears that the BSCCO material has the possibility of producing a better grounding strap than that of the 123 material. Attempts to reproduce near room temperature superconductors in the Y-Ba-Cu-O system were unsuccessful. In Part 2, several methods of processing the high temperature superconductor Tl2Ba2Ca2Cu3O10 were investigated; i.e., different precursor compositions were sintered at various sintering times and temperatures. The highest superconductig temperature was found to be 117.8K when fired at 900 C for three hours. Higher sintering temperatures produced a melted sample which was nonsuperconducting at liquid nitrogen temperature. Also, a preliminary study found Li2O substitutions for copper appeared to increase the transition temperature and create fluxing action upon sintering. It was suggested that lower sintering temperatures might be obtained with lithium additions to produce reliable Tl2Ba2Ca2Cu3O10 processing methods

    Scanning tunneling spectroscopy of high-temperature superconductors

    Full text link
    Tunneling spectroscopy played a central role in the experimental verification of the microscopic theory of superconductivity in the classical superconductors. Initial attempts to apply the same approach to high-temperature superconductors were hampered by various problems related to the complexity of these materials. The use of scanning tunneling microscopy/spectroscopy (STM/STS) on these compounds allowed to overcome the main difficulties. This success motivated a rapidly growing scientific community to apply this technique to high-temperature superconductors. This paper reviews the experimental highlights obtained over the last decade. We first recall the crucial efforts to gain control over the technique and to obtain reproducible results. We then discuss how the STM/STS technique has contributed to the study of some of the most unusual and remarkable properties of high-temperature superconductors: the unusual large gap values and the absence of scaling with the critical temperature; the pseudogap and its relation to superconductivity; the unprecedented small size of the vortex cores and its influence on vortex matter; the unexpected electronic properties of the vortex cores; the combination of atomic resolution and spectroscopy leading to the observation of periodic local density of states modulations in the superconducting and pseudogap states, and in the vortex cores.Comment: To appear in RMP; 65 pages, 62 figure

    Thin Film Superconducting Devices

    Get PDF
    Techniques have been developed with which it is possible to fabricate superconducting thin film structures (“bridges”) which show Josephson-like phenomena, with a wide variety of electrical and superconducting parameters. These bridges—based on the proximity effect—are made in layered thin film substrates which have been fabricated from many different, both hard and soft, superconducting materials. The fabrication techniques and the electrical and superconducting characteristics for these proximity effect bridges including a simple low frequency (≤10 GHz) equivalent circuit will be discussed. These bridges have been incorporated into simple thin film circuits for use as galvanometers, magnetometers, gradiometers, detector arrays, etc. Extension of these techniques to more complex superconducting thin film bridge circuits including resistors, capacitors, and inductors will be indicated
    corecore