2,018 research outputs found

    Excitons in type-II quantum dots: Finite offsets

    Full text link
    Quantum size effects for an exciton attached to a spherical quantum dot are calculated by a variational approach. The band line-ups are assumed to be type-II with finite offsets. The dependence of the exciton binding energy upon the dot radius and the offsets is studied for different sets of electron and hole effective masses

    Invisibility in non-Hermitian tight-binding lattices

    Full text link
    Reflectionless defects in Hermitian tight-binding lattices, synthesized by the intertwining operator technique of supersymmetric quantum mechanics, are generally not invisible and time-of-flight measurements could reveal the existence of the defects. Here it is shown that, in a certain class of non-Hermitian tight-binding lattices with complex hopping amplitudes, defects in the lattice can appear fully invisible to an outside observer. The synthesized non-Hermitian lattices with invisible defects possess a real-valued energy spectrum, however they lack of parity-time (PT) symmetry, which does not play any role in the present work.Comment: to appear in Phys. Rev.

    Systematics of quadrupolar correlation energies

    Full text link
    We calculate correlation energies associated with the quadrupolar shape degrees of freedom with a view to improving the self-consistent mean-field theory of nuclear binding energies. The Generator Coordinate Method is employed using mean-field wave functions and the Skyrme SLy4 interaction. Systematic results are presented for 605 even-even nuclei of known binding energies, going from mass A=16 up to the heaviest known. The correlation energies range from 0.5 to 6.0 MeV in magnitude and are rather smooth except for large variations at magic numbers and in light nuclei. Inclusion of these correlation energies in the calculated binding energy is found to improve two deficiencies of the Skyrme mean field theory. The pure mean field theory has an exaggerated shell effect at neutron magic numbers and addition of the correlation energies reduce it. The correlations also explain the phenomenon of mutually enhanced magicity, an interaction between neutron and proton shell effects that is not explicable in mean field theory.Comment: 4 pages with 3 embedded figure

    Graphs and networks theory

    Get PDF
    This chapter discusses graphs and networks theory

    Bound states in the continuum in open Aharonov-Bohm rings

    Full text link
    Using formalism of effective Hamiltonian we consider bound states in continuum (BIC). They are those eigen states of non-hermitian effective Hamiltonian which have real eigen values. It is shown that BICs are orthogonal to open channels of the leads, i.e. disconnected from the continuum. As a result BICs can be superposed to transport solution with arbitrary coefficient and exist in propagation band. The one-dimensional Aharonov-Bohm rings that are opened by attaching single-channel leads to them allow exact consideration of BICs. BICs occur at discrete values of energy and magnetic flux however it's realization strongly depend on a way to the BIC's point.Comment: 5 pgaes, 4 figure
    • …
    corecore