231 research outputs found

    Processing of spatial sounds in the impaired auditory system

    Get PDF

    The Effect of a Voice Activity Detector on the Speech Enhancement

    Get PDF
    A multimicrophone speech enhancement algorithm for binaural hearing aids that preserves interaural time delays was proposed recently. The algorithm is based on multichannel Wiener filtering and relies on a voice activity detector (VAD) for estimation of second-order statistics. Here, the effect of a VAD on the speech enhancement of this algorithm was evaluated using an envelope-based VAD, and the performance was compared to that achieved using an ideal error-free VAD. The performance was considered for stationary directional noise and nonstationary diffuse noise interferers at input SNRs from 10 to +5dB. Intelligibility-weighted SNR improvements of about 20dB and 6dB were found for the directional and diffuse noise, respectively. No large degradations (<1dB) due to the use of envelope-based VAD were found down to an input SNR of 0dB for the directional noise and 5dB for the diffuse noise. At lower input SNRs, the improvement decreased gradually to 15dB for the directional noise and 3dB for the diffuse noise.12 page(s

    Assistive listening headsets for high noise environments: Protection and communication

    Get PDF
    © 2015 IEEE. In industrial noise environments, the use of assistive listening headsets is a means to provide adequate access to voice communication while wearing hearing protection. This paper presents a performance evaluation and comparison of two different methods to provide the binaural speech enhancement in real industrial noise scenarios. The investigated binaural methods based on differential beamforming and multichannel Wiener filter show different strengths and weaknesses. A transient noise suppression algorithm is also proposed and evaluated. Performance evaluation shows that this algorithm, together with the binaural multi-channel Wiener filter approach, can successfully reduce the hammering noise. This can be observed from the PESQ scores and the signal characteristics

    Improving speech intelligibility in hearing aids. Part I: Signal processing algorithms

    Full text link
    [EN] The improvement of speech intelligibility in hearing aids is a traditional problem that still remains open and unsolved. Modern devices may include signal processing algorithms to improve intelligibility: automatic gain control, automatic environmental classification or speech enhancement. However, the design of such algorithms is strongly restricted by some engineering constraints caused by the reduced dimensions of hearing aid devices. In this paper, we discuss the application of state-of-theart signal processing algorithms to improve speech intelligibility in digital hearing aids, with particular emphasis on speech enhancement algorithms. Different alternatives for both monaural and binaural speech enhancement have been considered, arguing whether they are suitable to be implemented in a commercial hearing aid or not.This work has been funded by the Spanish Ministry of Science and Innovation, under project TEC2012-38142-C04-02.Ayllón, D.; Gil Pita, R.; Rosa Zurera, M.; Padilla, L.; Piñero Sipán, MG.; Diego Antón, MD.; Ferrer Contreras, M.... (2014). Improving speech intelligibility in hearing aids. Part I: Signal processing algorithms. Waves. 6:61-71. http://hdl.handle.net/10251/57901S6171
    corecore